【題目】趙化鑫城某超市購(gòu)進(jìn)了一批單價(jià)為16元的日用品,銷(xiāo)售一段時(shí)間后,為獲得更多的利潤(rùn),商場(chǎng)決定提高銷(xiāo)售的價(jià)格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元銷(xiāo)售,每月能賣(mài)360件;若按每件25元銷(xiāo)售,每月能賣(mài)210件;若每月的銷(xiāo)售件數(shù)y(件)與價(jià)格x(元/件)滿(mǎn)足ykx+b

1)求出kb的值,并指出x的取值范圍?

2)為了使每月獲得價(jià)格利潤(rùn)1920元,商品價(jià)格應(yīng)定為多少元?

3)要使每月利潤(rùn)最大,商品價(jià)格又應(yīng)定為多少?最大利潤(rùn)是多少?

【答案】1k=﹣30,b960,x取值范圍為16≤x≤32;(2)商品的定價(jià)為24元;(3)商品價(jià)格應(yīng)定為24元,最大利潤(rùn)是1920元.

【解析】

1)根據(jù)待定系數(shù)法求解即可;根據(jù)單價(jià)不低于進(jìn)價(jià)(16元)和銷(xiāo)售件數(shù)y0可得關(guān)于x的不等式組,解不等式組即得x的取值范圍;

2)根據(jù)每件的利潤(rùn)×銷(xiāo)售量=1920,可得關(guān)于x的方程,解方程即可求出結(jié)果;

3)設(shè)每月利潤(rùn)為W元,根據(jù)W=每件的利潤(rùn)×銷(xiāo)售量可得Wx的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)解答即可.

解:(1)由題意,得:,解得:,y=﹣30x+960,

y≥030x+960≥0,解得:x≤32,

x≥16,∴x的取值范圍是:16≤x≤32;

答:k=﹣30,b960x取值范圍為:16≤x≤32;

2)由題意,得:(﹣30x+960)(x16)=1920,解得:x1=x2=24,

答:商品的定價(jià)為24元;

3)設(shè)每月利潤(rùn)為W元,由題意,得:W=(﹣30x+960)(x16)=﹣30x242+1920

∵﹣300,∴當(dāng)x24時(shí),W最大1920

答:商品價(jià)格應(yīng)定為24元,最大利潤(rùn)是1920元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一袋中裝有形狀大小都相同的四個(gè)小球,每個(gè)小球上各標(biāo)有一個(gè)數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為一個(gè)兩位數(shù)的個(gè)位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為這個(gè)兩位數(shù)的十位數(shù).

(1)寫(xiě)出按上述規(guī)定得到所有可能的兩位數(shù);

(2)從這些兩位數(shù)中任取一個(gè),求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西物產(chǎn)豐富,在歷史傳承與現(xiàn)代科技進(jìn)步中,特色農(nóng)林牧業(yè)、農(nóng)產(chǎn)品加工業(yè)、傳統(tǒng)手工業(yè)不斷發(fā)展革新,富有地域特色和品牌的士特產(chǎn)品愈加豐富.根據(jù)市場(chǎng)調(diào)查,下面五種特產(chǎn)比較受人們的青睞:山西汾酒、山西老陳醋、晉中平遙牛肉、山西沁州黃小米、運(yùn)城芮城麻片,某學(xué)校老師帶領(lǐng)學(xué)生在集市上隨機(jī)調(diào)查了部分市民對(duì)我最喜愛(ài)的特產(chǎn)進(jìn)行投票,將票數(shù)進(jìn)行統(tǒng)計(jì).繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).

請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.

直接寫(xiě)出參與投票的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

若該集市上共有人,請(qǐng)估計(jì)該集市喜愛(ài)運(yùn)城芮城麻片的人數(shù);

若要從這五種特產(chǎn)中隨機(jī)抽取出兩種特產(chǎn),請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求正好抽到山西汾酒和晉中平遙牛肉的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)垃圾分類(lèi)處理,改善生態(tài)環(huán)境,某小區(qū)將生活垃圾分成三類(lèi):廚余垃圾、可回收垃圾和其他垃圾,分別記為ab,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,B,C

1)小明將垃圾分裝在三個(gè)袋中,任意投放,用畫(huà)樹(shù)狀圖或列表的方法求把三個(gè)袋子都放錯(cuò)位置的概率是多少?

2)某學(xué)習(xí)小組為了了解居民生活垃圾分類(lèi)投放的情況,現(xiàn)隨機(jī)抽取了某天三類(lèi)垃圾箱中總共100噸的生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如表(單位:噸):

A

B

C

a

40

10

10

b

3

24

3

c

2

2

6

調(diào)查發(fā)現(xiàn),在“可回收垃圾”中塑料類(lèi)垃圾占10%,每回收1噸塑料類(lèi)垃圾可獲得0.7噸二級(jí)原料,某城市每天大約產(chǎn)生200噸生活垃圾假設(shè)該城市每天處理投放正確的垃圾,每天大概可回收多少?lài)嵥芰项?lèi)垃圾的二級(jí)原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OBx軸正半軸上,反比例函數(shù)yx0)的圖象經(jīng)過(guò)該菱形對(duì)角線的交點(diǎn)A,且與邊BC交于點(diǎn)F.若點(diǎn)D的坐標(biāo)為(3,4),則點(diǎn)F的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)ECD邊上一點(diǎn),,連接AE、BE、BD,且AE、BD交于點(diǎn)F.若,則(  )

A.15.5B.16.5C.17.5D.18.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:各類(lèi)方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類(lèi)似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類(lèi)方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.

轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= ,x3=

(2)拓展:用轉(zhuǎn)化思想求方程的解;

(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水城門(mén)位于淀浦河和漕港河三叉口,是環(huán)城水系公園淀浦河夢(mèng)蝶島區(qū)域重要的標(biāo)志性景觀.在課外實(shí)踐活動(dòng)中,某校九年級(jí)數(shù)學(xué)興趣小組決定測(cè)量該水城門(mén)的高.他們的操作方法如下:如圖,先在D處測(cè)得點(diǎn)A的仰角為20°,再往水城門(mén)的方向前進(jìn)13米至C處,測(cè)得點(diǎn)A的仰角為31°(點(diǎn)D、C、B在一直線上),求該水城門(mén)AB的高.(精確到0.1米)

(參考數(shù)據(jù):sin20°≈0.34cos20°≈0.94,tan20°≈0.36sin31°≈0.52,cos31°≈0.86tan31°≈0.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)OBC邊上一點(diǎn),⊙O經(jīng)過(guò)A、B兩點(diǎn),與BC邊交于點(diǎn)E,點(diǎn)FBE下方半圓弧上一點(diǎn),FEAC,垂足為D,∠BEF2F

1)求證:AC為⊙O切線.

2)若AB5,DF4,求⊙O半徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案