【題目】如圖,在中,是邊上的一點,,交邊于,于,,.
(1)是等腰三角形嗎?請說明理由;
(2)連結(jié),當(dāng) 度時,是等邊三角形.
【答案】(1)是,詳見解析;(2)60
【解析】
(1)證明Rt△BDE≌Rt△CFD,得到∠B=∠C,利用等角對等邊即可解答;
(2)根據(jù)Rt△BDE≌Rt△CFD,得到DE=DF,當(dāng)∠EDF=60°時,△DEF是等邊三角形(有一個角是60°的等腰三角形是等邊三角形),再分別求出∠DFC,∠C,利用三角形的內(nèi)角和為180°,即可解答.
解:(1)∵DE⊥BC,DF⊥AC于F,
∴∠BDE=90°,∠DFC=90°,
在Rt△BDE和Rt△CFD中,
,
∴Rt△BDE≌Rt△CFD,
∴∠B=∠C,
∴AB=AC,
即△ABC是等腰三角形.
(2)如圖,
∵Rt△BDE≌Rt△CFD,
∴DE=DF,
當(dāng)∠EDF=60°時,△DEF是等邊三角形(有一個角是60°的等腰三角形是等邊三角形),
∴∠CDF=90°-∠EDF=30°,
∴∠C=90°-∠DFC=60°,
∴∠B=∠C=60°,
∴∠A=180°-∠B-∠C=60°.
故答案為:60.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,A、C分別在坐標(biāo)軸上,點B的坐標(biāo)為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀一段文字,再回答下列問題:已知在平面內(nèi)兩點的坐標(biāo)為,,則該兩點間距離公式為.同時,當(dāng)兩點在同一坐標(biāo)軸上或所在直線平行于軸、平行于軸時,兩點間的距離公式可化簡成與.
(1)若已知兩點,,試求兩點間的距離;
(2)已知點在平行于軸的直線上,點的縱坐標(biāo)為7,點的縱坐標(biāo)為,試求兩點間的距離;
(3)已知一個三角形各頂點的坐標(biāo)為,,,你能判定這三點是否共線?若共線請說明理由,若不共線請求出圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的兩條角平分線BD、CE交于O,且∠A=60°,則下列結(jié)論中不正確的是( )
A.∠BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P(m,n)是拋物線y=﹣+1上任意一點,l是過點(0,2)且與x軸平行的直線,過點P作直線PH⊥l,垂足為H,PH交x軸于Q.
(1)(探究)填空:當(dāng)m=0時,OP= ,PH= ;當(dāng)m=4時,OP= ,PH= .
(2)(證明)對任意m,n,猜想OP與PH的大小關(guān)系,并證明你的猜想.
(3)(應(yīng)用)當(dāng)OP=OH,且m≠0時,求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,AB的垂直平分線交線段AC于D,若△ABC和△DBC的周長分別是60 cm和38 cm,則△ABC的腰長和底邊BC的長分別是( )
A. 22cm和16cmB. 16cm和22cm
C. 20cm和16cmD. 24cm和12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ECD均為等邊三角形,B、C、D三點在一直線上,AD、BE相交于點F,DF=3,AF=4,則線段FE的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),且與y
軸相交于負(fù)半軸。給出四個結(jié)論:①;②;③;④ ,其中正確結(jié)論的序
號是___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com