如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是( 。
A.(10π﹣)米2 B.(π﹣)米2 C.(6π﹣)米2 D.(6π﹣)米2
C【考點】扇形面積的計算.
【專題】壓軸題;探究型.
【分析】先根據(jù)半徑OA長是6米,C是OA的中點可知OC=OA=3,再在Rt△OCD中,利用勾股定理求出CD的長,根據(jù)銳角三角函數(shù)的定義求出∠DOC的度數(shù),由S陰影=S扇形AOD﹣S△DOC即可得出結(jié)論.
【解答】解:連接OD,
∵弧AB的半徑OA長是6米,C是OA的中點,
∴OC=OA=×6=3米,
∵∠AOB=90°,CD∥OB,
∴CD⊥OA,
在Rt△OCD中,
∵OD=6,OC=3,
∴CD===3米,
∵sin∠DOC===,
∴∠DOC=60°,
∴S陰影=S扇形AOD﹣S△DOC=﹣×3×3=(6π﹣)平方米.
故選C.
【點評】本題考查的是扇形的面積,根據(jù)題意求出∠DOC的度數(shù),再由S陰影=S扇形AOD﹣S△DOC得出結(jié)論是解答此題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
一個口袋中有四個完全相同的小球,把它們分別標號為1、2、3、4,隨機地摸出一個小球,然后放回,再隨機地摸出一個小球,則兩次摸出的小球標號的和等于4的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
一個物體由多個完全相同的小正方體組成,它的三視圖如圖所示,那么組成這個物體的小正方體的個數(shù)為( )
A.2個 B.3個 C.5個 D.10個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C
(1)求拋物線的函數(shù)解析式.
(2)設點D在拋物線上,點E在拋物線的對稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點D的坐標.
(3)P是拋物線上第一象限內(nèi)的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
關(guān)于x的方程(a﹣5)x2﹣4x﹣1=0有實數(shù)根,則a滿足( 。
A.a(chǎn)≥1 B.a(chǎn)>1且a≠5 C.a(chǎn)≥1且a≠5 D.a(chǎn)≠5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某車的剎車距離y(m)與開始剎車時的速度x(m/s)之間滿足二次函數(shù)y=x2+x(x>0),若該車某次的剎車距離為9m,則開始剎車時的速度為 m/s.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在反比例函數(shù)y=(k>0,x>0)的圖象上,點D的坐標為(4,3).
(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當菱形的頂點D落在函數(shù)y=(k>0,x>0)的圖象上時,求菱形ABCD沿x軸正方向平移的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后都停留一段時間,然后分別按原速一同駛往甲地后停車.設慢車行駛的時間為x小時,兩車之間的距離為y千米,圖中折線表示y與x之間的函數(shù)圖象.當快車到達甲地時,慢車離甲地的距離為 千米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com