如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
(3)P是拋物線上第一象限內(nèi)的動點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【專題】綜合題;壓軸題.
【分析】(1)由于拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點(diǎn)O,待定系數(shù)法即可求出拋物線的解析式;
(2)根據(jù)平行四邊形的性質(zhì),對邊平行且相等,可以求出點(diǎn)D的坐標(biāo);
(3)分兩種情況討論,①△AMP∽△BOC,②PMA∽△BOC,根據(jù)相似三角形對應(yīng)邊的比相等可以求出點(diǎn)P的坐標(biāo).
【解答】解:(1)設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),
將點(diǎn)A(﹣2,0),B(﹣3,3),O(0,0),代入可得:,
解得:.
故函數(shù)解析式為:y=x2+2x.
(2)當(dāng)AO為平行四邊形的邊時,DE∥AO,DE=AO,由A(﹣2,0)知:DE=AO=2,
由四邊形AODE可知D在對稱軸直線x=﹣1右側(cè),
則D橫坐標(biāo)為1,代入拋物線解析式得D(1,3).
綜上可得點(diǎn)D的坐標(biāo)為:(1,3).
(3)存在.
如圖:∵B(﹣3,3),C(﹣1,﹣1),
根據(jù)勾股定理得:BO2=18,CO2=2,BC2=20,
∵BO2+CO2=BC2,
∴△BOC是直角三角形,
假設(shè)存在點(diǎn)P,使以P,M,A為頂點(diǎn)的 三角形與△BOC相似,
設(shè)P(x,y),由題意知x>0,y>0,且y=x2+2x,
①若△AMP∽△BOC,則=,
即x+2=3(x2+2x),
得:x1=,x2=﹣2(舍去).
當(dāng)x=時,y=,即P(,),
②若△PMA∽△BOC,則=,
即:x2+2x=3(x+2),
得:x1=3,x2=﹣2(舍去)
當(dāng)x=3時,y=15,即P(3,15).
故符合條件的點(diǎn)P有兩個,分別是P(,)或(3,15).
【點(diǎn)評】本題考查的是二次函數(shù)的綜合題,首先用待定系數(shù)法求出拋物線的解析式,然后利用平行四邊形的性質(zhì)和相似三角形的性質(zhì)確定點(diǎn)D和點(diǎn)P的坐標(biāo),注意分類討論思想的運(yùn)用,難度較大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)如圖1,請你寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系(不必證明);
(2)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點(diǎn)O,連接AP,BO.猜想并寫出BO與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在四張背面完全相同的卡片上分別印有等腰三角形、平行四邊形、菱形和圓的圖案,現(xiàn)將印有圖案的一面朝下,混合后從中隨機(jī)抽取兩張,則抽到卡片上印有圖案都是軸對稱圖形的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學(xué)生人數(shù)為 ,并把條形統(tǒng)計圖補(bǔ)充完整;
(2)扇形統(tǒng)計圖中m= ,n= ,表示“足球”的扇形的圓心角是 度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某人沿著有一定坡度的坡面前進(jìn)了10米,此時他與水平地面的垂直距離為2米,則這個坡面的坡度為( )
A.1:2 B.1:3 C.1: D.:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點(diǎn),點(diǎn)D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是( 。
A.(10π﹣)米2 B.(π﹣)米2 C.(6π﹣)米2 D.(6π﹣)米2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com