【題目】如圖,有一艘貨船和一艘客船同時從港口A出發(fā),客船每小時比貨船多走5海里,客船與貨船速度的比為4:3,貨船沿東偏南10°方向航行,2小時后貨船到達B處,客船到達C處,若此時兩船相距50海里.
(1)求兩船的速度分別是多少?
(2)求客船航行的方向.
【答案】(1)兩船的速度分別是20海里/小時和15海里/小時;(2)客船航行的方向為北偏東10°方向.
【解析】
(1)設兩船的速度分別是4x海里/小時和3x海里/小時,依據(jù)客船每小時比貨船多走5海里,列方程求解即可;
(2)依據(jù)AB2+AC2=BC2,可得△ABC是直角三角形,且∠BAC=90°,再根據(jù)貨船沿東偏南10°方向航行,即可得到客船航行的方向為北偏東10°方向.
(1)設兩船的速度分別是4x海里/小時和3x海里/小時,依題意得:
4x﹣3x=5.
解得:x=5,∴4x=20,3x=15.
答:兩船的速度分別是20海里/小時和15海里/小時;
(2)由題可得:AB=15×2=30,AC=20×2=40,BC=50,∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠BAC=90°.
又∵貨船沿東偏南10°方向航行,∴∠1=10°.
∵∠1+∠2=∠2+∠3=90°,∴∠3=∠1=10°,∴客船航行的方向為北偏東10°方向.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(a,b),B(c,0),|a-3|+(2b-c)2+=0.
(1)求點A,B的坐標;
(2)如圖,點C為x軸正半軸上一點,且OC=OA,點D為OC的中點,連AC,AD,請?zhí)剿?/span>AD+CD與AC之間的大小關系,并說明理由;
(3)如圖,過點A作AE⊥y軸于E,F(xiàn)為x軸負半軸上一動點( 不與(-3,0)重合 ),G在EF延長線上,以EG為一邊作∠GEN=45°,過A作AM⊥x軸,交EN于點M,連FM,當點F在x軸負半軸上移動時,式子的值是否發(fā)生變化?若變化,求出變化的范圍;若不變化,請求出其值并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C的解析式為y=ax2+bx+c,則下列說法中錯誤的是( )
A.a確定拋物線的形狀與開口方向
B.若將拋物線C沿y軸平移,則a,b的值不變
C.若將拋物線C沿x軸平移,則a的值不變
D.若將拋物線C沿直線l:y=x+2平移,則a、b、c的值全變
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在同一平面內,將△ABC繞點A旋轉到△AED的位置,若AE⊥BC,∠ADC=65°,則∠ABC的度數(shù)為( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AC=BC,∠ACB=90°,將△ABC繞點A旋轉60°到△ADE的位置,點C的對應點為E,連接CD,若AC=BC=1,則CD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在△ABC中,AD是∠BAC的平分線,DE⊥AC于E,DF⊥AB于F,且FB=CE,則下列結論:①DE=DF,②AE=AF,③BD=CD,④AD⊥BC。
其中正確的有___________ (填序號)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩種商品原來的單價和為100元.因市場變化,甲商品降價10%,乙商品提價40%,調價后兩種商品的單價和比原來的單價和提高了20%.甲、乙兩種商品原來的單價各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中小方格邊長為1,請你根據(jù)所學的知識解決下面問題.
(1)求網(wǎng)格圖中△ABC的面積.
(2)判斷△ABC是什么形狀?并所明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com