【題目】如圖,在四邊形OABC中,BCAO,AOC=90°,點(diǎn)A,B的坐標(biāo)分別為(5,0),(2,6),點(diǎn)DAB上一點(diǎn),且,雙曲線y=(k>0)經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E

(1)求雙曲線的解析式;

(2)求四邊形ODBE的面積.

【答案】(1)y= (2)12

【解析】分析:(1)作BM⊥x軸于M,作DN⊥x軸于N,利用點(diǎn)A,B的坐標(biāo)得到BC=OM=2,BM=OC=6,AM=3,再證明△ADN∽△ABM,利用相似比可計(jì)算出DN=2,AN=1,則ON=OA-AN=4,得到D點(diǎn)坐標(biāo)為(4,2),然后把D點(diǎn)坐標(biāo)代入y=中求出k的值即可得到反比例函數(shù)解析式;

(2)根據(jù)反比例函數(shù)k的幾何意義和S四邊形ODBE=S梯形OABC-SOCE-SOAD進(jìn)行計(jì)算.

詳解:(1)作BMx軸于M,作DNx軸于N,如圖,

∵點(diǎn)A,B的坐標(biāo)分別為(5,0),(2,6),

BC=OM=2,BM=OC=6,AM=3,

DNBM,

∴△ADN∽△ABM,

,即,

DN=2,AN=1,

ON=OA﹣AN=4,

D點(diǎn)坐標(biāo)為(4,2),

D(4,2)代入y=k=2×4=8,

∴反比例函數(shù)解析式為y=;

(2)S四邊形ODBE=S梯形OABC﹣SOCE﹣SOAD

=×(2+5)×6﹣×|8|﹣×5×2

=12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,、在同一直線上,則的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,等腰梯形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對(duì)稱(chēng)中心作點(diǎn)P(0,2)的對(duì)稱(chēng)點(diǎn)P1,以B為對(duì)稱(chēng)中心作點(diǎn)P1的對(duì)稱(chēng)點(diǎn)P2,以C為對(duì)稱(chēng)中心作點(diǎn)P2的對(duì)稱(chēng)點(diǎn)P3,以D為對(duì)稱(chēng)中心作點(diǎn)P3的對(duì)稱(chēng)點(diǎn)P4,…,重復(fù)操作依次得到點(diǎn)P1,P2,…,則點(diǎn)P2010的坐標(biāo)是( 。

A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖,過(guò)y軸上任意一點(diǎn)p,作x軸的平行線,分別與反比例函數(shù)y=和y=的圖象交于A點(diǎn)和B點(diǎn)若C為x軸上任意一點(diǎn),連接AC、BC,則ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,雙曲線和直線y=kx+b交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(﹣3,2),BCy軸于點(diǎn)C,且OC=6BC

1)求雙曲線和直線的解析式;

2)直接寫(xiě)出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(2,0),B(6,2),C(6,6),反比例函數(shù)y1=(x>0)的圖象過(guò)點(diǎn)D,點(diǎn)P是一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象與該反比例函數(shù)的一個(gè)公共點(diǎn),對(duì)于下面四個(gè)結(jié)論:

①反比例函數(shù)的解析式是y1=

②一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象一定經(jīng)過(guò)(6,6)點(diǎn);

③若一次函數(shù)y2=kx+3﹣3k的圖象經(jīng)過(guò)點(diǎn)C,當(dāng)x>2時(shí),y1<y2;

④對(duì)于一次函數(shù)y2=kx+3﹣3k(k≠0),當(dāng)yx的增大而增大時(shí),點(diǎn)P橫坐標(biāo)a的取值范圍是0<a<3.

其中正確的是(  )

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市304國(guó)道通遼至霍林郭勒段在修建過(guò)程中經(jīng)過(guò)一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結(jié)果取整數(shù),參考數(shù)據(jù)≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解七年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分七年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,接,,四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.

根據(jù)所給信息,解答以下問(wèn)題:

1)求一共抽取了多少名七年級(jí)學(xué)生的測(cè)試成績(jī)?

2)扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的扇形圓心角為     度(直接填空):

3)直接在圖中補(bǔ)全條形統(tǒng)計(jì)圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案