【題目】已知如圖,拋物線(xiàn)軸交于點(diǎn)A和點(diǎn)C(2,0),與 軸交于點(diǎn)D,將△DOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)D恰好與點(diǎn)A重合,點(diǎn)C與點(diǎn)B重合.

(1)直接寫(xiě)出點(diǎn)A和點(diǎn)B的坐標(biāo);

(2)求的值;

(3)已知點(diǎn)E是該拋物線(xiàn)的頂點(diǎn),求證:AB⊥EB.

【答案】(1)A(-6,0)、B(0,2);(2),;(3)E(-2,8) .

【解析】

試題

(1)由題意易得點(diǎn)D的坐標(biāo)為(0,6),結(jié)合AOB是由△DOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的,即可得到OA=6,OB=OC=2,由此即可得到點(diǎn)A和點(diǎn)B的坐標(biāo);

(2)將點(diǎn)A和點(diǎn)C的坐標(biāo)代入列出關(guān)于的二元一次方程組,解方程組即可求得的值;

(3)由(2)中所得的值可得二次函數(shù)的解析式,把解析式配方即可求得點(diǎn)E的坐標(biāo),結(jié)合點(diǎn)A和點(diǎn)B的坐標(biāo)即可求得AE2、AB2、BE2的值,這樣由勾股定理的逆定理即可得到∠ABE=90°,從而可得AB⊥BE.

試題解析

(1)∵在中,當(dāng)時(shí),,

點(diǎn)D的坐標(biāo)為(0,6),

∵△AOB是由△DOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的,

∴OA=OD=6,OB=OC=2,

∴點(diǎn)A的坐標(biāo)為(-6,0),點(diǎn)B的坐標(biāo)為(0,2);

(2)∵點(diǎn)A(-6,0)和點(diǎn)C(2,0)在的圖象上,

,解得:

(3)如圖,連接AE,

由(2)可知

,

點(diǎn)E的坐標(biāo)為(-2,8),

∵點(diǎn)A(-6,0),點(diǎn)B(0,2),

∴AE2=,AB2=,BE2=,

∴AE2=AB2+BE2,

∴∠ABE=90°,

∴AB⊥EB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)行去年A型車(chē)的銷(xiāo)售總額為6萬(wàn)元,今年每輛車(chē)的售價(jià)比去年減少400元.若賣(mài)出的數(shù)量相同,銷(xiāo)售總額將比去年減少20%.

(1)求今年A型車(chē)每輛車(chē)的售價(jià).

(2)該車(chē)行計(jì)劃新進(jìn)一批A型車(chē)和B型車(chē)共45輛,已知A、B型車(chē)的進(jìn)貨價(jià)格分別是1100元,1400元,今年B型車(chē)的銷(xiāo)售價(jià)格是2000元,要求B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車(chē)獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】陽(yáng)光體育運(yùn)動(dòng)關(guān)乎每個(gè)學(xué)生未來(lái)的幸福生活,今年五月,我市某校開(kāi)展了以陽(yáng)光體育我是冠軍為主題的一分鐘限時(shí)跳繩比賽,要求每個(gè)班選2﹣3名選手參賽,現(xiàn)將80名選手比賽成績(jī)(單位:次/分鐘)進(jìn)行統(tǒng)計(jì).繪制成頻數(shù)分布直方圖,如圖所示.

1)圖中a值為  

2)將跳繩次數(shù)在160190的選手依次記為A1A2、An,從中隨機(jī)抽取兩名選手作經(jīng)驗(yàn)交流,請(qǐng)用樹(shù)狀或列表法求恰好抽取到的選手A1A2的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,DBC的中點(diǎn),DEABE,DFACF,BE=CF

1)求證:AD平分∠BAC

2)連接EF,求證:AD垂直平分EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn) a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2;

方程 的兩個(gè)根是x1=1x2=3;

③3a+c0

當(dāng)y0時(shí),x的取值范圍是﹣1≤x3

當(dāng)x0時(shí),yx增大而增大

其中結(jié)論正確的個(gè)數(shù)是( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃經(jīng)銷(xiāo)A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如下表所示.

價(jià)格/類(lèi)型

A

B

進(jìn)價(jià)(元/盞)

40

65

售價(jià)(元/盞)

60

100

1)若該商場(chǎng)購(gòu)進(jìn)這批臺(tái)燈共用去2500元,問(wèn)這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?

2)在每種臺(tái)燈銷(xiāo)售利潤(rùn)不變的情況下,若該商場(chǎng)銷(xiāo)售這批臺(tái)燈的總利潤(rùn)不少于1400元,問(wèn)至少需購(gòu)進(jìn)B種臺(tái)燈多少盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A的中點(diǎn),AEACA,與⊙OCB的延長(zhǎng)線(xiàn)交于點(diǎn)F,E,且.

(1)求證:△ADC∽△EBA

(2)如果AB8,CD5,求tan∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】汶川地震發(fā)生后,全國(guó)人民抗震救災(zāi),眾志成城某地政府急災(zāi)民之所需,立即組織輛汽車(chē),將三種救災(zāi)物資共噸一次性運(yùn)往災(zāi)區(qū),假設(shè)甲、乙,丙三種車(chē)型分別運(yùn)載三種物資,根據(jù)下表提供的信息解答下列問(wèn)題:

車(chē)型

汽車(chē)運(yùn)載量(/)

1)設(shè)裝運(yùn)品種物資的車(chē)輛數(shù)分別為試用含的代數(shù)式表示;

2)據(jù)(1)中的表達(dá)式,試求三種物資各幾噸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接正方形,AB=4,PC、PD是⊙O的兩條切線(xiàn),C、D為切點(diǎn).

(1)如圖1,求⊙O的半徑;

(2)如圖1,若點(diǎn)EBC的中點(diǎn),連接PE,求PE的長(zhǎng)度;

(3)如圖2,若點(diǎn)MBC邊上任意一點(diǎn)(不含B、C),以點(diǎn)M為直角頂點(diǎn),在BC的上方作∠AMN=90°,交直線(xiàn)CP于點(diǎn)N,求證:AM=MN.

查看答案和解析>>

同步練習(xí)冊(cè)答案