【題目】定義:如圖1,D,E在△ABC的邊BC上,若△ADE是等邊三角形則稱△ABC可內嵌,△ADE叫做△ABC的內嵌三角形.
(1)直角三角形______可內嵌.(填寫“一定”、“一定不”或“不一定”)
(2)如圖2,在△ABC中,∠BAC=120°,△ADE是△ABC的內嵌三角形,試說明AB2=BDBC是否成立?如果成立,請給出證明;如果不一定成立,請舉例說明.
(3)在(2)的條件下,如果AB=1,AC=2,求△ABC的內嵌△ADE的邊長
【答案】(1)不一定;(2)成立,理由見解析;(3)
【解析】
(1)當直角三角形是等腰直角三角形時可內嵌,所以直角三角形不一定都可內嵌;(2)根據相似三角形的判斷方法,得出△BDA∽△BAC,根據相似三角形對應邊成比例即可得出;(3)根據△BDA∽△BAC,△AEC∽△BAC,導出DE、CE和x的關系,依據AB2=BDBC列出關于x的方程,從而求出△ABC的內嵌△ADE的邊長.
當直角三角形是等腰直角三角形時可內嵌,
∴直角三角形不一定可內嵌.
(2)∵△ADE是△ABC的內嵌三角形,
∴△ADE是正三角形,
∴∠ADE=60°,
在△ADB和△BAC中,
∵∠ADB=∠BAC=120°,∠B=∠B
∴△BDA∽△BAC,
∴,
即AB2=BDBC.
(3)設BD=x,
∵△BDA∽△BAC,
∴ ,
∴
即AD=2x,
∴AE=DE=x
同理可證:△AEC∽△BAC,
∴,
∴
∴CE=4x,
∴BC=7x
由(2)可知AB2=BDBC
∴12=x﹒7x,
解得x=,
∴DE=,
∴△ABC的內嵌△ADE的邊長是 .
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點P從B出發(fā)沿BA向A運動,速度為每秒1cm,點E是點B以P為對稱中心的對稱點,點P運動的同時,點Q從A出發(fā)沿AC向C運動,速度為每秒2cm,當點Q到達頂點C時,P,Q同時停止運動,設P,Q兩點運動時間為t秒.
(1)當t為何值時,PQ∥BC?
(2)設四邊形PQCB的面積為y,求y關于t的函數關系式;
(3)四邊形PQCB面積能否是△ABC面積的?若能,求出此時t的值;若不能,請說明理由;
(4)當t為何值時,△AEQ為等腰三角形?(直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象交x軸于(-1,0)點,則下列結論中正確的是( )
A.c<0B.a-b+c<0C.b2<4acD.2a+b=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4 經過點A(﹣3,0),點 B 在拋物線上,CB∥x軸,且AB 平分∠CAO.則此拋物線的解析式是___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,個邊長為的相鄰正方形的一邊均在同一直線上,點,,,…分別為邊,,,…,的中點,的面積為,的面積為,…的面積為,則________.(用含的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義一種新函數:形如(,且)的函數叫做“鵲橋”函數.小麗同學畫出了“鵲橋”函數y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個結論:①圖象與坐標軸的交點為,和;②圖象具有對稱性,對稱軸是直線;③當或時,函數值隨值的增大而增大;④當或時,函數的最小值是0;⑤當時,函數的最大值是4.其中正確結論的個數是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線交x軸于A、B兩點,直線y=kx+b經過點A,與這條拋物線的對稱軸交于點M(1,2),且點M與拋物線的頂點N關于x軸對稱.
(1)求拋物線的函數關系式;
(2)設題中的拋物線與直線的另一交點為C,已知P(x,y)為線段AC上一點,過點P作PQ⊥x軸,交拋物線于點Q.求線段PQ的最大值及此時P坐標;
(3)在(2)的條件下,求△AQC面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC(頂點是網格線的交點)和點A1.
(1)將△ABC繞點A順時針旋轉90°,畫出相應的△AB1C1;
(2)將△AB1C1沿射線AA1平移到△A1B2C2處,畫出△A1B2C2;
(3)點C在兩次變換過程中所經過的路徑長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=(x+m)2+k的圖象,其頂點坐標為M(1,﹣4).
(1)求出圖象與x軸的交點A、B的坐標;
(2)在y軸上存在一點Q,使得△QMB周長最小,求出Q點坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com