【題目】如圖(1),拋物線y=x2﹣2x+k與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3).

(1)k= , 點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;


(2)設(shè)拋物線y=x2﹣2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在拋物線y=x2﹣2x+k上求出點(diǎn)Q坐標(biāo),使△BCQ是以BC為直角邊的直角三角形.

【答案】
(1)﹣3,(﹣1,0),(3,0)
(2)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,則M(1,﹣4),

拋物線的對(duì)稱軸交x軸于N,如圖(1),

四邊形ABMC的面積=SAOC+S梯形OCMN+SMNB= ×1×3+ ×(3+4)×1+ ×4×(3﹣1)=9


(3)解:存在.

作DE∥y軸交直線BC于E,如圖(2),

設(shè)直線BC的解析式為y=kx+b,

把B(3,0),C(0,﹣3)代入得 ,解得 ,

∴直線BC的解析式為y=x﹣3,

設(shè)D(x,x2﹣2x﹣3),則E(x,x﹣3),

∴DE=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,

∴SBCD= DE3=﹣ x2+ x=﹣ (x﹣ 2+ ,

當(dāng)x= 時(shí),SBCD有最大值,

∵SACB= ×4×3=6,

∴x= 時(shí),四邊形ABDC的面積最大,

此時(shí)D點(diǎn)坐標(biāo)為( ,﹣ );


(4)解:∵OB=OC=3,

∴△OBC為等腰直角三角形,

∴∠OCB=∠OBC=45°,

當(dāng)∠CBQ=90°時(shí),BQ交y軸于G點(diǎn),如圖(3),則∠OBG=45°,

∴OG=OB=3,則G(0,3),

易得直線BG的解析式為y=﹣x+3,

解方程組 ,

∴Q(﹣2,5);

當(dāng)∠BCQ=90°時(shí),CQ交x軸于H點(diǎn),如圖(3),

則∠OCH=45°,

∴OH=OC=3,則H(﹣3,0),

易得直線CH的解析式為y=﹣x﹣3,

解方程組 ,

∴Q(1,﹣2);

綜上所述,點(diǎn)Q坐標(biāo)為(1,﹣2)或(2,5)時(shí),使△BCQ是以BC為直角邊的直角三角形.


【解析】解:(1)把C(0,﹣3)代入y=x2﹣2x+k得k=﹣3,

則拋物線解析式為y=x2﹣2x﹣3,

當(dāng)y=0時(shí),x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0);

所以答案是﹣3,(﹣1,0),(3,0);

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)Ay軸的正半軸上,坐標(biāo)為,點(diǎn)Bx軸的負(fù)半軸上,坐標(biāo)為,同時(shí)滿足,連接AB,且AB=10.點(diǎn)Dx軸正半軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn),連接DE

1)求A、B兩點(diǎn)坐標(biāo);

2)若,點(diǎn)D的橫坐標(biāo)為x,線段的長(zhǎng)為d,請(qǐng)用含x的式子表示d;

3)若,AFDF分別平分∠BAO、∠BDE,相交于點(diǎn)F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018120日,山西迎來(lái)了復(fù)興號(hào)列車,與和諧號(hào)相比,復(fù)興號(hào)列車時(shí)速更快,安全性更好.已知太原南﹣北京西全程大約500千米,復(fù)興號(hào)”G92次列車平均每小時(shí)比某列和諧號(hào)列車多行駛40千米,其行駛時(shí)間是該列和諧號(hào)列車行駛時(shí)間的(兩列車中途停留時(shí)間均除外).經(jīng)查詢,復(fù)興號(hào)”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐復(fù)興號(hào)”G92次列車從太原南到北京西需要多長(zhǎng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為(1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)AB分別向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,得到A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.

(1)直接寫出點(diǎn)CD的坐標(biāo),求出四邊形ABDC的面積;

(2)x軸上是否存在一點(diǎn)F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖⊙O是△ABC的外接圓,圓心O在這個(gè)三角形的高AD上,AB=10,BC=12,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】……個(gè)數(shù)中,不能表示成兩個(gè)平方數(shù)差的數(shù)有________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時(shí),若船速為26千米/時(shí),水速為2千米/時(shí),求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是:( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在RtABC中,ACB=90°,現(xiàn)按如下步驟作圖:

分別以A,C為圓心,a為半徑(a>AC)作弧,兩弧分別交于M,N兩點(diǎn);

過(guò)M,N兩點(diǎn)作直線MN交AB于點(diǎn)D,交AC于點(diǎn)E;

ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,設(shè)點(diǎn)D的像為點(diǎn)F

(1)請(qǐng)?jiān)趫D中直線標(biāo)出點(diǎn)F并連接CF;

(2)求證:四邊形BCFD是平行四邊形;

(3)當(dāng)B為多少度時(shí),四邊形BCFD是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料:對(duì)于三個(gè)數(shù)a,b,c,用M{a,b,c}表示這三個(gè)數(shù)的平均數(shù),用min{a,b,c}表示這三個(gè)數(shù)中最小的數(shù).例如:M{1,2,3};min{1,23}=﹣1;min{1,2,a}

解決下列問題:

1)若min{22x+2,42x}2,則x的范圍__________;

2如果M{2x+1,2x}min{2,x+1,2x},求x;

根據(jù),你發(fā)現(xiàn)了結(jié)論如果M{a,b,c}min{a,bc},那么__________(填ab,c的大小關(guān)系)

運(yùn)用的結(jié)論,若M{2x+y+2,x+2y,2xy}min{2x+y+2x+2y,2xy},求x+y的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案