【題目】如圖所示,E、F分別是正方形ABCD的邊CD,AD上的點,且CE=DF,AE,BF相交于點O,下列結(jié)論①AE=BF;②AEBF;③AO=OE;④SAOB=S四邊形DEOF中,錯誤的有( )

A.1個 B.2個 C.3個 D.4個

【答案】A

【解析】

試題分析:根據(jù)四邊形ABCD是正方形及CE=DF,可證出ADE≌△BAF,則得到:①AE=BF,以及ADEBAF的面積相等,得到;④SAOB=S四邊形DEOF;可以證出ABO+BAO=90°,則②AEBF一定成立.錯誤的結(jié)論是:③AO=OE.

解:四邊形ABCD是正方形,

CD=AD

CE=DF

DE=AF

∴△ADE≌△BAF

AE=BF(故①正確),SADE=SBAF,DEA=AFBEAD=FBA

SAOB=SBAF﹣SAOF,

S四邊形DEOF=SADE﹣SAOF,

SAOB=S四邊形DEOF(故④正確),

∵∠ABF+AFB=DAE+DEA=90°

∴∠AFB+EAF=90°

AEBF一定成立(故②正確).

假設(shè)AO=OE,

AEBF(已證),

AB=BE(線段垂直平分線上的點到線段兩端點的距離相等),

在RtBCE中,BE>BC,

AB>BC,這與正方形的邊長AB=BC相矛盾,

,假設(shè)不成立,AO≠OE(故③錯誤);

故錯誤的只有一個.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解a3﹣a的結(jié)果是(
A.a2
B.a(a2﹣1)
C.a(a+1)(a﹣1)
D.a(a﹣1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小山崗的斜坡AC的坡度是tanα=,在與山腳C距離200米的D處,測得山頂A的仰角為26.6°,求小山崗的高AB(結(jié)果取整數(shù):參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣bx﹣4ax軸于點AB,交y軸于點C,其中點BC的坐標(biāo)分別為B1,0)、C0,4).

1)求拋物線的解析式,并用配方法把其化為y=ax﹣h2+k的形式,寫出頂點坐標(biāo);

2)已知點Dm,1﹣m)在第二象限的拋物線上,求出m的值,并直接寫出點D關(guān)于直線AC的對稱點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面上,正方形ABCD的四個頂點到直線l的距離只取四個值,其中一個值是另一個值的3倍,這樣的直線l可以有( 。

A. 4 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解x2y-4y_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)35,38,37,36,37,36,37,35的眾數(shù)是( )
A.35
B.36
C.37
D.38

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)化簡求值:(2+a)(2-a)+a(a-2b)+3a5b÷(-a2b)4,其中ab=-.

(2)因式分解:a(n-1)2-2a(n-1)+a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個長為15m的梯子斜靠在墻上,梯子的頂端距地面的距離為12m,

①如果梯子的頂端下滑了1m,那么梯子的底端也向后滑動1m嗎?請通過計算解答.

②梯子的頂端從A處沿墻AO下滑的距離與點B向外移動的距離有可能相等嗎?若有可能,請求出這個距離,沒有可能請說明理由.

③若將上題中的梯子換成15米長的直木棒,將木棒緊靠墻豎直放置然后開始下滑直至直木棒的頂端A滑至墻角O處,試求出木棒的中點Q滑動的路徑長.

查看答案和解析>>

同步練習(xí)冊答案