【題目】已知:如圖,在ABC中,∠ABC和∠ACB的角平分線(xiàn)相交于點(diǎn)P,且PEAB,PFAC,垂足分別為E、F

1)求證:PE=PF

2)若∠BAC=60°,連接AP,求∠EAP的度數(shù).

【答案】1)見(jiàn)解析;(230°.

【解析】

1)作PDBC于點(diǎn)D,根據(jù)角平分線(xiàn)的性質(zhì)知PD=PE,PD=PF,從而證明PE=PF即可;

2)∠ABC和∠ACB的角平分線(xiàn)相交于點(diǎn)P,則AP平分∠BAC,即可求出∠EAP的度數(shù).

1)作PDBC于點(diǎn)D,

BP平分∠ABCCP平分∠ACB,PEABPFAC,

PD=PE,PD=PF

PE=PF;

2)∵∠ABC和∠ACB的角平分線(xiàn)相交于點(diǎn)P,

AP平分∠BAC,

∵∠BAC=60°

∠EAP=30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列動(dòng)車(chē)從甲地開(kāi)往乙地,一列普通列車(chē)從乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā),設(shè)普通列車(chē)行駛的時(shí)間為(小時(shí)),兩車(chē)之間的距離為(千米),圖中的折線(xiàn)表示之間的函數(shù)關(guān)系。

根據(jù)圖象回答下列問(wèn)題:

(1)甲地與乙地相距______千米,兩車(chē)出發(fā)后______小時(shí)相遇;

(2)普通列車(chē)到達(dá)終點(diǎn)共需_______小時(shí),普通列車(chē)的速度是______千米/小時(shí);

(3)動(dòng)車(chē)的速度是________千米/小時(shí);

(4)的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,點(diǎn)D在直線(xiàn)BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),點(diǎn)E在射線(xiàn)AC上運(yùn)動(dòng),且∠ADE=∠AED,設(shè)∠DAC=n

(1)如圖(1),當(dāng)點(diǎn)D在邊BC上時(shí),且n=36°,則∠BAD= _________,∠CDE= _________.

(2)如圖(2),當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),其他條件不變,請(qǐng)猜想∠BAD和∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.

(3)當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)C的右側(cè)時(shí),其他條件不變,∠BAD和∠CDE還滿(mǎn)足(2)中的數(shù)量關(guān)系嗎?請(qǐng)畫(huà)出圖形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=﹣x+b分別與x軸、y軸交于A(yíng),B兩點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),過(guò)點(diǎn)B的另一條直線(xiàn)交x軸負(fù)半軸于點(diǎn)C,且OB:OC=3:1.

(1)求點(diǎn)B的坐標(biāo)及直線(xiàn)BC對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)在線(xiàn)段OB上存在點(diǎn)P,使得點(diǎn)P到點(diǎn)B,C的距離相等,試求出點(diǎn)P的坐標(biāo);

(3)如果在x軸上方存在點(diǎn)D,使得以點(diǎn)A,B,D為頂點(diǎn)的三角形與△ABC全等,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=x2﹣(3m+1)x+2m2+m(m>0),與y軸交于點(diǎn)C,與x軸交于點(diǎn)A(x1,0),B(x2,0),且x1<x2

(1)求2x1﹣x2+3的值;

(2)當(dāng)m=2x1﹣x2+3時(shí),將此拋物線(xiàn)沿對(duì)稱(chēng)軸向上平移n個(gè)單位,使平移后得到的拋物線(xiàn)頂點(diǎn)落在ABC的內(nèi)部(不包括ABC的邊),求n的取值范圍(直接寫(xiě)出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)本課堂的實(shí)踐中,王老師經(jīng)常讓學(xué)生以問(wèn)題為中心進(jìn)行自主、合作、探究學(xué)習(xí).

(課堂提問(wèn))王老師在課堂中提出這樣的問(wèn)題:如圖1,在RtABC中,∠ACB=90°,∠BAC=30°,那么BCAB有怎樣的數(shù)量關(guān)系?

(互動(dòng)生成)經(jīng)小組合作交流后,各小組派代表發(fā)言.

1)小華代表第3小組發(fā)言:AB=2BC. 請(qǐng)你補(bǔ)全小華的證明過(guò)程.

證明:把ABC沿著AC翻折,得到ADC.

∴∠ACD=ACB=90°,

∴∠BCD=ACD+ACB=90°+90°=180°,

即:點(diǎn)B、C、D共線(xiàn).

(請(qǐng)?jiān)谙旅嫜a(bǔ)全小華的證明過(guò)程)

2)受到第3小組翻折的啟發(fā),小明代表第2小組發(fā)言:如圖2,在ABC中,如果把條件ACB=90°”改為ACB=135°”,保持BAC=30°”不變,若BC=1,求AB的長(zhǎng).

(能力遷移)我們發(fā)現(xiàn),翻折可以探索圖形性質(zhì),請(qǐng)利用翻折解決下面問(wèn)題.

如圖3,點(diǎn)DABC內(nèi)一點(diǎn),AD=AC,∠BAD=CAD=20°,∠ADB+ACB=210°,則AD、DBBC三者之間的數(shù)量關(guān)系是 .

(課后拓展)如圖4,在四邊形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=CDB=60°,且AC=1

ABD的周長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為線(xiàn)段上一動(dòng)點(diǎn)(不與點(diǎn),重合),在同側(cè)分別作等邊和等邊,交于點(diǎn)交于點(diǎn),交于點(diǎn),連接.下列五個(gè)結(jié)論:①;②;③;④DE=DP;⑤.其中正確結(jié)論的個(gè)數(shù)是( )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,E、F分別是AD、BC上的點(diǎn),將平行四邊形ABCD沿EF所在直線(xiàn)翻折,使點(diǎn)B與點(diǎn)D重合,且點(diǎn)A落在點(diǎn)A′處.

(1)求證:A′ED≌△CFD;

(2)連結(jié)BE,若∠EBF=60°,EF=3,求四邊形BFDE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案