【題目】已知反比例函數(shù)的圖像與一次函數(shù)的圖像的一個交點的橫坐標是-3.
(1)求的值,并畫出這個反比例函數(shù)的圖像;
(2)根據(jù)反比例函數(shù)的圖像,寫出當(dāng)時,的取值范圍.
【答案】(1),圖像見解析,(2).
【解析】
(1)根據(jù)題意,先將代入一次函數(shù),求得,即可求得交點坐標,再將交點坐標代入反比例函數(shù)解析式,即可求得,根據(jù)描點法即可畫出圖像;
(2)將,代入反比例函數(shù)解析式,即可求得值,當(dāng)時,觀察圖像即可求得的取值范圍.
解:(1)根據(jù)題意,將代入,解得,
∴ 交點坐標為(-3,-2),再代入反比例函數(shù)中,解得,
∴ 反比例函數(shù)解析式為,
列出幾組、的對應(yīng)值:
描點連線,即可畫出函數(shù)圖像,如圖:
(2)當(dāng)時,,
根據(jù)圖像可知,當(dāng)時,.
故當(dāng)時,的取值范圍是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實黨中央提出的“惠民政策”,我市今年計劃開發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不低于270萬元,又不超過296萬元.開發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價為10萬元,一套B型“廉租房”的造價為4.8萬元.
(1)請問有幾種開發(fā)建設(shè)方案?
(2) 在投入資金最少的方案下,為了讓更多的人享受到“惠民”政策,開發(fā)建設(shè)辦公室決定通過縮小“廉租房”的面積來降低造價、節(jié)省資金.每套A戶型“廉租房”的造價降低1萬元,每套B戶型“廉租房”的造價降低0.3萬元,將節(jié)省下來的資金全部用于再次開發(fā)建設(shè)縮小面積后的“廉租房”,如果同時建設(shè)A、B兩種戶型,請你直接寫出再次開發(fā)建設(shè)的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則( )
A. DE=EB B. DE=EB C. DE=DO D. DE=OB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設(shè)運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解不等式|x+1|>2時,我們可以采用下面的解答方法:
①當(dāng)x+1≥0時,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式組
∴解得不等式組的解集為x>1.
②當(dāng)x+1<0時,|x+1|=﹣(x+1).
∴由原不等式得﹣(x+1)>2.∴可得不等式組
∴解得不等式組的解集為x<﹣3.
綜上所述,原不等式的解集為x>1或x<﹣3.
請你仿照上述方法,嘗試解不等式|x﹣2|≤1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學(xué)生就餐。
(1)1個大餐廳和1個小餐廳分別可供多少名學(xué)生就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是一張放在平面直角坐標系中的矩形紙片,點在軸上,點在軸上,將邊沿直線折疊,使點落在邊上的點處.
的大小 (度);
若,用含的代數(shù)式表示.則
在的條件下,已知折痕的長為,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊承擔(dān)了100米的道路改造工程任務(wù),在確保工程質(zhì)量的前提下,實際施工時每天改造道路比原計劃多10米,結(jié)果提前5天完成了任務(wù),求原計劃平均每天改造道路多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com