【題目】圖1為北京城市女生從出生到15歲的平均身高統(tǒng)計圖,圖2是北京城市某女生從出生到12歲的身高統(tǒng)計圖.
請你根據(jù)以上信息預(yù)測該女生15歲時的身高約為 , 你的預(yù)測理由是

【答案】170厘米;12歲時該女生比平均身高高8厘米,預(yù)測她15歲時也比平均身高高8厘米
【解析】解:根據(jù)以上信息預(yù)測該女生15歲時的身高約為170厘米, 預(yù)測的理由是:12歲時該女生比平均身高高8厘米,預(yù)測她15歲時也比平均身高高8厘米,
所以答案是:170厘米,12歲時該女生比平均身高高8厘米,預(yù)測她15歲時也比平均身高高8厘米.
【考點精析】根據(jù)題目的已知條件,利用折線統(tǒng)計圖的相關(guān)知識可以得到問題的答案,需要掌握能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義點P(a,b)的“變換點”為Q.且規(guī)定:當(dāng)a≥b時,Q為(b,﹣a);當(dāng)a<b時,Q為(a,﹣b).
(1)點(2,1)的變換點坐標(biāo)為;
(2)若點A(a,﹣2)的變換點在函數(shù)y= 的圖象上,求a的值;
(3)已知直線l與坐標(biāo)軸交于(6,0),(0,3)兩點.將直線l上所有點的變換點組成一個新的圖形記作M. 判斷拋物線y=x2+c與圖形M的交點個數(shù),以及相應(yīng)的c的取值范圍,請直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 為等邊三角形,DE 分別是邊 AC、BC 上的點,且ADCE,AE BD 相交于點 P.

(1)求∠BPE 的度數(shù);

(2)若 BFAE 于點 F,試判斷 BP PF 的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司在抗震救災(zāi)期間承擔(dān)40 000頂救災(zāi)帳篷的生產(chǎn)任務(wù),分為A、B、C、D四種型號,它們的數(shù)量百分比和每天單獨生產(chǎn)各種型號帳篷的數(shù)量如圖所示:
根據(jù)以上信息,下列判斷錯誤的是(
A.其中的D型帳篷占帳篷總數(shù)的10%
B.單獨生產(chǎn)B型帳篷的天數(shù)是單獨生產(chǎn)C型帳篷天數(shù)的3倍
C.單獨生產(chǎn)A型帳篷與單獨生產(chǎn)D型帳篷的天數(shù)相等
D.單獨生產(chǎn)B型帳篷的天數(shù)是單獨生產(chǎn)A型帳篷天數(shù)的2倍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張三角形紙片ABC,其中∠C=90°,AC=6,BC=8.小靜同學(xué)將紙片做兩次折疊:第一次使點A落在C處,折痕記為m;然后將紙片展平做第二次折疊,使點A落在B處,折痕記為n.則m,n的大小關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD和正方形DEFG中,頂點B、D、F在同一直線上,H是BF的中點.
(1)如圖1,若AB=1,DG=2,求BH的長;

(2)如圖2,連接AH,GH.

小宇觀察圖2,提出猜想:AH=GH,AH⊥GH.小宇把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:延長AH交EF于點M,連接AG,GM,要證明結(jié)論成立只需證△GAM是等腰直角三角形;
想法2:連接AC,GE分別交BF于點M,N,要證明結(jié)論成立只需證△AMH≌△HNG.

請你參考上面的想法,幫助小宇證明AH=GH,AH⊥GH.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥ABD,DF⊥CEF,求∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣2x+7x軸、y軸分別相交于點C、B,與直線y=x相交于點A.

(1)A點坐標(biāo);

(2)△OAC的面積;

(3)如果在y軸上存在一點P,使△OAP是以OA為底邊的等腰三角形,求P點坐標(biāo);

(4)在直線y=﹣2x+7上是否存在點Q,使△OAQ的面積等于6?若存在,請求出Q點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某風(fēng)景區(qū)門票價格如圖所示,某旅行社有甲、乙兩個旅行團隊,計劃在“五一”小黃金周期間到該景點游玩,兩團隊游客人數(shù)之和為120人,乙團隊人數(shù)不超過50人.設(shè)甲團隊人數(shù)為x人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為W元.
(1)求W關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x 的取值范圍;
(2)若甲團隊人數(shù)不超過100人,請說明甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約多少元.

查看答案和解析>>

同步練習(xí)冊答案