【題目】七(1)班小明同學通過《測量硬幣的厚度與質(zhì)量》實驗得到了每枚硬幣的厚度和質(zhì)量,數(shù)據(jù)如下表.他從儲蓄罐取出一把5角和1元硬幣,為了知道總的金額,他把這些硬幣疊起來,用尺量出它們的總厚度為22.6mm,又用天平稱出總質(zhì)量為78.5g,請你幫助小明同學算出這把硬幣的總金額為______元.
1元硬幣 | 5角硬幣 | |
每枚厚度(單位:mm) | 1.8 | 1.7 |
每枚質(zhì)量(單位:g) | 6.1 | 6.0 |
科目:初中數(shù)學 來源: 題型:
【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運回,已知該公司租車從基地到公司的運輸費為5000元.
(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為 ,BD是⊙O的切線,D為切點,過圓上一點C作BD的垂線,垂足為B,BC=3,點A是優(yōu)弧CD的中點,則sin∠A的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O中,F(xiàn)G、AC是直徑,AB是弦,F(xiàn)G⊥AB,垂足為點P,過點C的直線交AB的延長線于點D,交GF的延長線于點E,已知AB=4,⊙O的半徑為 .
(1)分別求出線段AP、CB的長;
(2)如果OE=5,求證:DE是⊙O的切線;
(3)如果tan∠E= ,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x、y的方程組給出下列結(jié)論:①是方程組的解;②無論a取何值,x,y的值都不可能互為相反數(shù);③當a=1時,方程組的解也是方程x+y=4-a的解;④x,y都為自然數(shù)的解有4對.其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,為厲行節(jié)能減排,倡導綠色出行,某公司擬在我市甲、乙兩個街道社區(qū)投放一批共享單車(俗稱“小黃車”),這批自行車包括A、B兩種不同款型.
成本單價 (單位:元) | 投放數(shù)量 (單位:輛) | 總價(單位:元) | |
A型 | x | 50 | 50x |
B型 | x+10 | 50 |
|
成本合計(單位:元) | 7500 |
問題1:看表填空
如圖2所示,本次試點投放的A、B型“小黃車”共有 輛;用含有x的式子表示出B型自行車的成本總價為 ;
問題2:自行車單價
試求A、B兩型自行車的單價各是多少?
問題3:投放數(shù)量
現(xiàn)在該公司采取如下方式投放A型“小黃車”:甲街區(qū)每100人投放n輛,乙街區(qū)每100人投放(n+2)輛,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有人,求甲街區(qū)每100人投放A型“小黃車”的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(1, ),點B(2,0),P為線段OB上一點,過點P作PQ∥OA,交AB于點Q,連接AP,則△APQ面積最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列判斷錯誤的是( )
A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD
C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為BC邊上的點,反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點D(m,2)和AB邊上的點E(3, ).
(1)求反比例函數(shù)的表達式和m的值;
(2)將矩形OABC的進行折疊,使點O于點D重合,折痕分別與x軸、y軸正半軸交于點F,G,求折痕FG所在直線的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com