【題目】拋物線的對稱軸為直線.若關于的一元二次方程在的范圍內(nèi)有實數(shù)根,則的取值范圍是_____________.
【答案】2≤t<11
【解析】
根據(jù)給出的對稱軸求出函數(shù)解析式為y=x22x+3,將一元二次方程x2+bx+3t=0的實數(shù)根可以看做y=x22x+3與函數(shù)y=t的有交點,再由1<x<4的范圍確定y的取值范圍即可求解;
解:∵y=x2+bx+3的對稱軸為直線x=1,
∴b=2,
∴y=x22x+3,
∴一元二次方程x2+bx+3t=0的實數(shù)根可以看做y=x22x+3與函數(shù)y=t的有交點,
∵方程在1<x<4的范圍內(nèi)有實數(shù)根,
當x=1時,y=6;
當x=4時,y=11;
函數(shù)y=x22x+3在x=1時有最小值2;
∴2≤t<11
故填:2≤t<11.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中是的中點,平分交于點,連接,以下四個結論:①平分;②;③;④.其中結論正確的個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=60°,點O為AB上一點,且3AO=AB,以OA為半徑作半圓O,交AC于點D,AB于點E,DE與OC相交于F.
(1)求證:CB與⊙O相切;
(2)若AB=6,求DF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx﹣12的圖象交x軸于A(﹣3,0),B(5,0)兩點,與y軸交于點C.點D是拋物線上的一個動點.
(1)求拋物線的解析式;
(2)設點D的橫坐標為m,并且當m≤x≤m+5時,對應的函數(shù)值y滿足﹣m,求m的值;
(3)若點D在第四象限內(nèi),過點D作DE∥y軸交BC于E,DF⊥BC于F.線段EF的長度是否存在最大值?若存在,請求出這個最大值及相應點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓練小組,他們?nèi)酥g進行互相傳球練習,籃球從一個人手中隨機傳到另外一個人手中計作傳球一次,共連續(xù)傳球三次.
(1)若開始時籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是 ;
(2)若開始時籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的邊的垂直平分線,垂足為點,與的延長線交于點.連接,,,與交于點,則下列結論:①四邊形是菱形;②;③;④四邊形;其中正確的結論有_____.(填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BD交AG于F點.已知FG=2,則線段AE的長度為( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形的兩條邊的長是方程的兩根沿直線將矩形折疊,點落在第一象限的點處,交軸于點.
(1)求點和點的坐標;
(2)將直線以每秒個單位長度的速度沿軸向下平移,求直線掃過的三角形的面積關于運動的時間的函數(shù)關系式;
(3)在(2)的條件下,在移動的直線上是否存在點,使以為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某快遞公司甲、乙兩名快遞員7月上旬10天里派送快遞,乙比甲晚工作一段時間,工作期間快遞員甲因事停工3天,各自的工作效率一定,他們各自的工作量(件)隨工作時間(天)變化的圖像如圖所示.則有下列說法:①甲工人的工作效率為60件/天;②乙工人每天比甲工人少送10件;③甲工人一共送420件;④乙比甲少工作2天.其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com