【題目】如圖,在矩形紙片ABCD中,AB=6cm,AD=8cm,折疊該紙片,使得AB邊落在對角線AC上,點(diǎn)B落在點(diǎn)F處,折痕為AE,則EF=_____cm.
【答案】3
【解析】
根據(jù)矩形的性質(zhì)得到BC=AD=8cm,∠B=90°,由勾股定理得到AC的值,根據(jù)折疊的性質(zhì)得到AF=AB=6,EF=BE,∠AFE=∠B=90°,根據(jù)勾股定理即可得到結(jié)論.
解:∵四邊形ABCD是矩形,
∴BC=AD=8cm,∠B=90°
∴AC===10cm,
∵折疊該紙片,使得AB邊落在對角線AC上,點(diǎn)B落在點(diǎn)F處,
∴AF=AB=6,EF=BE,∠AFE=∠B=90°,
∴CF=4,∠CFE=90°,CE=8﹣EF,
∵EF2+CF2=CE2,
∴EF2+42=(8﹣EF)2,
解得:EF=3cm,
故答案為:3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tan∠PBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作AB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長;
(2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;
(3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=4,O是AB的中點(diǎn),直線l經(jīng)過點(diǎn)O,∠1=60°,P點(diǎn)是直線l上一點(diǎn),當(dāng)△APB為直角三角形時(shí),則BP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC15°,AB,BC2,以AB為直角邊向外作等腰直角△BAD,且∠BAD=90°;以BC為斜邊向外作等腰直角△BEC,連接DE.
(1)按要求補(bǔ)全圖形;
(2)求DE長;
(3)直接寫出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,,直線過點(diǎn).
(1)當(dāng)時(shí),如圖1,分別過點(diǎn)和作直線于點(diǎn)直線于點(diǎn)與是否全等,并說明理由;
(2)當(dāng)時(shí),如圖2,點(diǎn)與點(diǎn)關(guān)于直線對稱,連接點(diǎn)在上,點(diǎn)是上一點(diǎn),分別過點(diǎn)作直線于點(diǎn)直線于點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為,點(diǎn)同時(shí)開始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
①當(dāng)為等腰直角三角形時(shí),求的值;
②當(dāng)與全等時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,印刷一張矩形的包裝紙,印刷部分的長為8cm,寬為4cm,上下空白寬各cm,左右空白寬各xcm,四周空白處的面積為Scm2.
(1)求S與x的關(guān)系式;
(2)當(dāng)四周空白處的面積為18cm2時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新建火車站站前廣場需要綠化的面積為46000米2,施工隊(duì)在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項(xiàng)綠化工程.
(1)該項(xiàng)綠化工程原計(jì)劃每天完成多少米2?
(2)該項(xiàng)綠化工程中有一塊長為20米,寬為8米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形的邊長.某一時(shí)刻,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),問:
(1)經(jīng)過多少時(shí)間,的面積等于矩形面積的?
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與相似?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com