【題目】某新店開(kāi)業(yè)宣傳,進(jìn)店有禮活動(dòng),店員們需準(zhǔn)備制作圓柱體禮品紙盒(如圖①),每個(gè)紙盒由1個(gè)長(zhǎng)方形側(cè)面和2個(gè)圓形底面組成,現(xiàn)有100張正方形紙板全部以A或者B方法截剪制作(如圖②),設(shè)截剪時(shí)x張用A方法.

1)根據(jù)題意,完成以下表格:

裁剪法A

裁剪法B

長(zhǎng)方形側(cè)面

x

   

圓形底面

   

0

2)若裁剪出的長(zhǎng)方形側(cè)面和圓形底面恰好用完,問(wèn)能做多少個(gè)紙盒?

3)按以上制作方法,若店員們希望準(zhǔn)備300個(gè)禮盒,那至少還需要正方形紙板   張.

【答案】12100x),8x;(2160個(gè);(388

【解析】

1)由題意得出截剪時(shí)(100x)張用B方法,一共能截剪出2100x)個(gè)長(zhǎng)方形側(cè)面,沒(méi)有圓形底面,由每張正方形紙板用A方法截剪出8個(gè)圓形和1個(gè)長(zhǎng)方形,得出一共能截剪出8x個(gè)圓形和x個(gè)長(zhǎng)方形,即可得出結(jié)果;

2)由題意得x+2100x)=×8x,解得x40,則×8×40160;

3)由題意得需要300×2÷875(張)紙板截剪圓形底面,需要(30075÷2112.5≈113(張)紙板截剪長(zhǎng)方形側(cè)面,共用正方形紙板75+113188(張),則至少還需要正方形紙板18810088(張).

解:(1)∵設(shè)截剪時(shí)x張用A方法,

∴截剪時(shí)(100x)張用B方法,

∵每張正方形紙板用B方法,只能截剪2個(gè)長(zhǎng)方形,

∴一共能截剪出2100x)個(gè)長(zhǎng)方形側(cè)面,沒(méi)有圓形底面,

∵每張正方形紙板用A方法截剪出8個(gè)圓形和1個(gè)長(zhǎng)方形,

∴一共能截剪出8x個(gè)圓形和x個(gè)長(zhǎng)方形,

故答案為:2100x),8x;

2)若裁剪出的長(zhǎng)方形側(cè)面和圓形底面恰好用完,

由題意得:x+2100x)=×8x,

解得:x40

×8×40160(個(gè));

答:若裁剪出的長(zhǎng)方形側(cè)面和圓形底面恰好用完,能做160個(gè)紙盒;

3)由題意得:需要300×2÷875(張)紙板截剪圓形底面,需要(30075÷2112.5≈113(張)紙板截剪長(zhǎng)方形側(cè)面,

∴共用正方形紙板:75+113188(張),

∴至少還需要正方形紙板:18810088(張),

故答案為:88

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)=(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)==b.

(1)已知T(1,﹣1)=﹣2,T(4,2)=1.

求a,b的值;

若關(guān)于m的不等式組 恰好有3個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;

(2)若T(x,y)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過(guò)B、C兩點(diǎn).

(1)求拋物線的解析式;

(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo);

(3)在(2)的結(jié)論下,過(guò)點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對(duì)稱(chēng)軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P、Q是方格紙中的兩格點(diǎn),請(qǐng)按要求畫(huà)出以PQ為對(duì)角線的格點(diǎn)四邊形.(頂點(diǎn)都在格點(diǎn)上的四邊形稱(chēng)為格點(diǎn)四邊形)

1)在圖①中畫(huà)出一個(gè)面積最小的中心對(duì)稱(chēng)圖形PAQB

2)在圖②中畫(huà)出一個(gè)四邊形PCQD,使其是軸對(duì)稱(chēng)圖形但不是中心對(duì)稱(chēng)圖形,且另一條對(duì)角線CD由線段PQ以某一格點(diǎn)為旋轉(zhuǎn)中心旋轉(zhuǎn)得到.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,原點(diǎn)O是矩形OABC的一個(gè)頂點(diǎn),點(diǎn)A、C都

在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)是(4.2),反比例函數(shù)與AB,BC分別交于點(diǎn)D,E。

(1)求直線DE的解析式;

(2)若點(diǎn)F為y軸上一點(diǎn),△OEF和△ODE的面積相等,求點(diǎn)F的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在△ABC與△ADE中,AB=AC,AD=AE,∠A是公共角。

(1)BD與CE的數(shù)量關(guān)系是:BD______CE;

(2)把圖①△ABC繞點(diǎn)A旋轉(zhuǎn)一定的角度,得到如圖②所示的圖形。

①求證:BD=CE;

②BD與CE所在直線的夾角與∠DAE的數(shù)量關(guān)系是什么?說(shuō)明理由。

(3)若AD=10,AB=6,把圖①中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(0°<α≤360)直接寫(xiě)出BD長(zhǎng)度的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),點(diǎn)是該直線上一點(diǎn),滿足.

1)求點(diǎn)的坐標(biāo);

2)若點(diǎn)是直線上另外一點(diǎn),滿足,且四邊形是平行四邊形,試畫(huà)出符合要求的大致圖形,并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC中,∠ABC90°,AB1,BC2,將線段BC繞點(diǎn)C順時(shí)旋轉(zhuǎn)90°得到線段CD,連接AD.

(1)說(shuō)明△ACD的形狀,并求出△ACD的面積;

(2)把等腰直角三角板按如圖2的方式擺放,頂點(diǎn)ECB邊上,頂點(diǎn)FDC的延長(zhǎng)線上,直角頂點(diǎn)與點(diǎn)C重合.A,B兩題中任選一題作答:

A .如圖3,連接DE,BF,

猜想并證明DEBF之間的關(guān)系;將三角板繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),直接寫(xiě)出DEBF之間的關(guān)系.

B .將圖2中的三角板繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(0<α<360°),如圖4所示,連接BE,DF,連接點(diǎn)CBE的中點(diǎn)M,

猜想并證明CMDF之間的關(guān)系;當(dāng)CE1CM時(shí),請(qǐng)直接寫(xiě)出α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游泳館普通票價(jià)20/暑假為了促銷(xiāo),新推出兩種優(yōu)惠卡

金卡售價(jià)600/,每次憑卡不再收費(fèi)

銀卡售價(jià)150/,每次憑卡另收10

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時(shí)所需總費(fèi)用為y

(1)分別寫(xiě)出選擇銀卡、普通票消費(fèi)時(shí),yx之間的函數(shù)關(guān)系式;

(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示請(qǐng)求出點(diǎn)A、B、C的坐標(biāo)

(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫(xiě)出選擇哪種消費(fèi)方式更合算

查看答案和解析>>

同步練習(xí)冊(cè)答案