【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學(xué)在濱海大道紅樹林路段,嘗試用自己所學(xué)的知識(shí)檢測(cè)車速,觀測(cè)點(diǎn)設(shè)在到公路l的距離為100米的P處.這時(shí),一輛富康轎車由西向東勻速駛來,測(cè)得此車從A處行駛到B處所用的時(shí)間為3秒,并測(cè)得∠APO=60°,BPO=45°,試判斷此車是否超過了每小時(shí)80千米的限制速度?

【答案】此車超過每小時(shí)80千米的限制速度.

【解析】試題分析: 首先,根據(jù)在直角三角形BPO中,∠BPO=45°,可得到BO=PO=100m,再根據(jù)在直角三角形APO中,∠APO=60°,運(yùn)用三角函數(shù)值,可得到AO=100,根據(jù)AB=AO-BO可求得AB的長(zhǎng);再結(jié)合速度的計(jì)算方法,求出車的速度,然后將車的速度與80千米/時(shí)進(jìn)行比較,即可得到結(jié)論.

試題解析:

解:在RtAPO,APO=60°,PAO=30°.

AP=2OP=200 m

AO==100(m).

RtBOP,BPO=45°

BO=OP=100 m.

AB=AO-BO=100-10073(m).

AB小車行駛的速度為73÷324.3(m/s)=87.48 km/h>80 km/h.

此車超過每小時(shí)80千米的限制速度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EFBC,ADBC, 1=2,

⑴判斷DMAB的位置關(guān)系,并說明理由;

⑵若∠BAC=70°,DM平分∠ADC,求∠ACB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中, ,向右平移5個(gè)單位向上平移4個(gè)單位之后得到的圖象

1兩點(diǎn)的坐標(biāo)分別為 .

2)作出平移之后的圖形.

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點(diǎn)從點(diǎn)出發(fā)沿方向以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn),運(yùn)動(dòng)的時(shí)間是().過點(diǎn)于點(diǎn),連接、

1)求、的長(zhǎng);

2)求證:;

3)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)O為對(duì)角線AC的中點(diǎn),過O點(diǎn)的射線OM,ON分別交AB,BC于點(diǎn)EF,且∠EOF=90°,BO,EF交于點(diǎn)P,則下面結(jié)論:

①圖形中全等的三角形只有三對(duì);②△EOF是等腰直角三角形;③正方形ABCD的面積等于四邊形OEBF面積的4倍;④BEBF=OA

其中正確結(jié)論的個(gè)數(shù)是(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線BC//ED.

(1)如圖1,若點(diǎn)A在直線DE上,且B=44°,∠EAC=57°,求BAC的度數(shù);

(2)如圖2,若點(diǎn)A是直線DE的上方一點(diǎn),點(diǎn)GBC的延長(zhǎng)線上求證:∠ACG=∠BAC+∠ABC;

(3)如圖3,FH平分AFE,CH平分ACG,且FHCA2倍少60°,直接寫出A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位小朋友在不打滑的平面軌道上滾動(dòng)一個(gè)半徑為5cm的圓環(huán),當(dāng)滾到與坡面BC開始相切時(shí)停止.其AB=40cm,BC與水平面的夾角為60°.其圓心所經(jīng)過的路線長(zhǎng)是cm(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這是某市部分簡(jiǎn)圖,為了確定各建筑物的位置:

(1)請(qǐng)你以火車站為原點(diǎn)建立平面直角坐標(biāo)系﹒

(2)寫出超市的坐標(biāo)(小正方形網(wǎng)格的單位長(zhǎng)度為1)﹒

(3)請(qǐng)將體育場(chǎng)、賓館和火車站看作三點(diǎn),用線段連接起來,得到三角形ABC,然后將此三角形向下平移4個(gè)單位,再畫出平移后的三角形A′B′C′,并計(jì)算三角形A′B′C′的面積﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD,AB2BC,在CD上取點(diǎn)E,使AEEB,那么∠EBC等于(  )

A. 15°B. 30°C. 45°D. 60°

查看答案和解析>>

同步練習(xí)冊(cè)答案