【題目】如圖,菱形ABCD的對角線交于點O,點E是菱形外一點,DEAC,CEBD

1)求證:四邊形DECO是矩形;

2)連接AEBD于點F,當(dāng)∠ADB30°,DE3時,求菱形ABCD的面積.

【答案】(1)見解析;(2).

【解析】

1)根據(jù)菱形的性質(zhì)求出∠DOC=90°,根據(jù)平行四邊形和矩形的判定得出即可;
2)根據(jù)矩形和菱形的性質(zhì)即可得到結(jié)論.

1)證明: ∵四邊形ABCD是菱形,

ACBD, 即∠DOC90°,

DEACCEBD,

∴四邊形DECO是平行四邊形

∴四邊形DECO是矩形;

2)解:∵四邊形ABCD是菱形 AOOC,

∵四邊形DECO是矩形 DEOC,

DE3 DEAO3,

∵∠ADB30°,ACBD

AD2OA2×36

OD3,

AC6BD6,

∴菱形ABCD的面積=ACBD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,ACBD相交于點O,點EOA的中點,連接BE并延長交AD于點F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平面直角坐標(biāo)系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點P是 y2 上的一個動點,則點P到直線 y1 的最短距離為()

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為 B,且拋物線不過第三象限.

(1)過點B作直線l垂直于x軸于點C,若點C坐標(biāo)為(2,0),a=1,求b和c的值;

(2)比較與0的大小,并說明理由;

(3)若直線y2=2x+m經(jīng)過點B,且與拋物線交于另外一點D(,b+8),求當(dāng)≤x<5時y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對角線長分別為68的菱形ABCD如圖所示,點O為對角線的交點,過點O折疊菱形,使B,B′兩點重合,MN是折痕.若B'M=1,則CN的長為( 。

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列兩則材料,回答問題,材料一:定義直線yax+b與直線ybx+a互為互助直線,例如,直線yx+4與直y4x+1互為互助直線;材料二:對于平面直角坐標(biāo)系中的任意兩點P1x1y1)、P2x2y2),P1、P2兩點間的直角距離dP1,P2)=|x1x2|+|y1y2|.如:Q1(﹣31)、Q22,4)兩點間的直角距離為dQ1,Q2)=|32|+|14|8;材料三:設(shè)P0x0,y0)為一個定點,Qx,y)是直線yax+b上的動點,我們把dP0Q)的最小值叫做P0到直線yax+b的直角距離.

1)計算S(﹣1,6),T(﹣2,3)兩點間的直角距離dS,T)=   ;

2)直線y=﹣2x+3上的一點Ha,b)又是它的互助直線上的點,求點H的坐標(biāo).

3)對于直線yax+b上的任意一點Mm,n),都有點N3m,2m3n)在它的互助直線上,試求點L5,﹣1)到直線yax+b的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為___________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教科書中這樣寫道:“我們把多項式叫做完全平方式,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當(dāng)?shù)捻検故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求化數(shù)式最大值.最小值等.

例如:分解因式

;例如求代數(shù)式的最小值..可知當(dāng)時,有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:

1)分解因式: _____

2)當(dāng)為何值時,多項式有最小值,并求出這個最小值.

3)當(dāng)為何值時.多項式有最小值并求出這個最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凸四邊形ABCD的兩條對角線和兩條邊的長度都為1,則四邊形ABCD中最大內(nèi)角度數(shù)為( 。

A.150°B.135°C.120°D.105°

查看答案和解析>>

同步練習(xí)冊答案