【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于y軸對稱的△ABlCl;
(2)點P在x軸上,且點P到點B與點C的距離之和最小,直接寫出點P的坐標(biāo)為 .
【答案】
(1)解:△ABC關(guān)于y軸對稱的△ABlCl如圖所示
(2)(﹣ ,0)
【解析】解:(2)如圖,
點P即為所求作的到點B與點C的距離之和最小,
點C′的坐標(biāo)為(﹣1,﹣1),
∵點B(﹣2,2),
∴點P到CC′的距離為 = ,
∴OP=1+ = ,
點P(﹣ ,0).
故答案為:(﹣ ,0).
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點B、C關(guān)于y軸的對稱點Bl、Cl的位置,然后順次連接即可;(2)找出點C關(guān)于x軸的對稱點C′,連接BC′與x軸的交點即為所求的點P,根據(jù)對稱性寫出點C′的坐標(biāo),再根據(jù)點B、C′的坐標(biāo)求出點P到CC′的距離,然后求出OP的長度,即可得解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=10cm,OC=6cm.F是線段OA上的動點,從點O出發(fā),以1cm/s的速度沿OA方向作勻速運(yùn)動,點Q在線段AB上.已知A,Q兩點間的距離是O,F(xiàn)兩點間距離的a倍.若用(a,t)表示經(jīng)過時間t(s)時,△OCF,△FAQ,△CBQ中有兩個三角形全等.請寫出(a,t)的所有可能情況 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列表格描述的是y與x之間的函數(shù)關(guān)系:則m與n的大小關(guān)系是_____
x | … | -2 | 0 | 2 | 4 | … |
y=kx+b | … | 3 | -1 | m | n | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中,正確的是( 。
A.弦是直徑
B.長度相等的兩條弧是等弧
C.三點確定一個圓
D.三角形的外心不一定在三角形的外部
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點,且AE=BC,∠1=∠2.
(1)證明:AB=AD+BC;
(2)判斷△CDE的形狀?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)將△ABC沿y軸翻折,則翻折后點A的對應(yīng)點的坐標(biāo)是 .
(2)作出△ABC關(guān)于y軸對稱的圖形△A1B1C1 , 畫△A1B1C1 , 并直接寫出點A1的坐標(biāo).
(3)將△ABC向下平移平移6個單位,向右平移7個單位得到△A2B2C2 , 畫出平移后的圖形.
(4)若以D,B,C為頂點的三角形與△ABC全等,請畫出所有符合條件的△DBC(點D與點A重合除外),并直接寫出點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=3,求6x2+4x﹣2(x2﹣1)﹣2(2x+x2)的值,小民粗心把x=3抄成了x=﹣3,但計算的結(jié)果卻正確的.你知道其中的原因嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com