【題目】在等邊△ABC中,點(diǎn)P,QBC邊上的兩個動點(diǎn)(不與點(diǎn)B、C重合),且APAQ

(1)如圖1,已知,∠BAP=20°,求∠AQB的度數(shù);

(2)點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,分別聯(lián)結(jié)AM、PM;

①當(dāng)點(diǎn)P分別在點(diǎn)Q左側(cè)和右側(cè)時,依據(jù)題意將圖2、圖3補(bǔ)全(不寫畫法);

②小明提出這樣的猜想:點(diǎn)P、Q在運(yùn)動的過程中,始終有PAPM.經(jīng)過小紅驗(yàn)證,這個猜想是正確的,請你在①的點(diǎn)PQ的兩種位置關(guān)系中選擇一種說明理由.

【答案】(1)80° (2)①答案見解析 ②答案見解析

【解析】

1)先利用三角形外角定理得到∠APQ的值,再利用等邊對等角轉(zhuǎn)化即可;

2)①根據(jù)題中所述步驟補(bǔ)全圖形即可;

②選擇點(diǎn)P在點(diǎn)Q的左側(cè),QMAC于點(diǎn)H,證明 AQH≌△AMH,再證明APAM,最后證明APM是等邊三角形即可.

解:(1)∵APAQ,

∴∠APQ=∠AQP,

∵△ABC是等邊三角形,

∴∠B=∠C=60°,

∵∠BAP=20°,

∴∠AQB=∠APQ=∠BAP+∠B=80°;

(2)①如圖2,3所示:

PAPM,

點(diǎn)P在點(diǎn)Q的左側(cè),QMAC于點(diǎn)H,

∵點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,

QHMH,∠AHQ=∠AHM,

AHAH

∴△AQH≌△AMHSAS),

AQAM,∠QAH=∠MAH,

APAQ,

APAM

∵∠BAP=∠CAQ,

∴∠QAH=∠MAH=∠BAP,

∴∠PAM=∠PAQ+∠QAH+∠MAH=∠PAQ+∠QAH+∠BAP=∠BAC=60°,

∴△APM是等邊三角形,

PAPM

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A為某旅游景區(qū)的最佳觀景點(diǎn),游客可從B處乘坐纜車先到達(dá)小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達(dá)A處,返程時從A處乘坐升降電梯直接到達(dá)C處,已知:AC⊥BCC,DE∥BC,AC=200.4米,BD=100米,∠α=30°,∠β=70°,則AE的長度約為________米.(參考數(shù)據(jù):sin70≈0.94,cos70°≈0.34,tan70°≈2.25).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某農(nóng)戶為了發(fā)展養(yǎng)殖業(yè),準(zhǔn)備利用一段墻墻長1855米長的竹籬笆圍成三個相連且面積相等的長方形雞、鴨、鵝各一個

1如果雞、鴨、鵝場總面積為1502那么有幾種圍法?

2如果需要圍成的養(yǎng)殖場的面積盡可能大,那么又應(yīng)怎樣圍最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備與汽車租憑公司簽訂租車合同,以每月用車路程xkm計算,甲汽車租憑公司每月收取的租賃費(fèi)為y1元,乙汽車租憑公司每月收取的租賃費(fèi)為y2元,若y1、y2x之間的函數(shù)關(guān)系如圖3所示,其中x0對應(yīng)的函數(shù)值為月固定租賃費(fèi),則下列判斷錯誤的是( )

A. 當(dāng)月用車路程為2000km時,兩家汽車租賃公司租賃費(fèi)用相同

B. 當(dāng)月用車路程為2300km時,租賃乙汽車租賃公車比較合算

C. 除去月固定租賃費(fèi),甲租賃公司每公里收取的費(fèi)用比乙租賃公司多

D. 甲租賃公司平均每公里收到的費(fèi)用比乙租賃公司少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點(diǎn),則下列結(jié)論:①△ADF≌△FEC;②四邊形ADEF為菱形;③。其中正確的結(jié)論是____________.(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一棵樹高h(yuǎn)(m)與生長時間n(年)之間有一定關(guān)系,請你根據(jù)下表中數(shù)據(jù),寫出h(m)與n(年)之間的關(guān)系式:_____

n/年

2

4

6

8

h/m

2.6

3.2

3.8

4.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)學(xué)生身體鍛煉,某校開展體育大課間活動,學(xué)校決定在學(xué)生中開設(shè)A:籃球,B:立定跳遠(yuǎn),C:跳繩,D:跑步,E:排球五種活動項目.為了了解學(xué)生對五種項目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩個統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:

1)在這項調(diào)查中,共調(diào)查了_______名學(xué)生;

2)請將兩個統(tǒng)計圖補(bǔ)充完整;

3)若該校有1200名在校學(xué)生,請估計喜歡排球的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是一個菱形綠地,其周長為40 m,ABC120°,在其內(nèi)部有一個四邊形花壇EFGH,其四個頂點(diǎn)恰好在菱形ABCD各邊的中點(diǎn),現(xiàn)在準(zhǔn)備在花壇中種植茉莉花,其單價為10/m2,請問需投資金多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點(diǎn)DAB的中點(diǎn).

(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.

①若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1s后,BPDCQP是否全等,請說明理由;

②若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時,能夠使BPDCQP全等?

(2)若點(diǎn)Q以②中的運(yùn)動速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動速度從點(diǎn)B同時出發(fā),都逆時針沿ABC三邊運(yùn)動,求經(jīng)過多長時間點(diǎn)P與點(diǎn)Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

同步練習(xí)冊答案