【題目】用指定的方法解方程:

1x-2=x(x-2)(因式分解法)

2(用配方法)

3(用公式法)

4(用合適的方法)

【答案】1x1=1 ,x2=2;2x1=3 ,x2=-1;3;(4) x1=- ,x2=-5

【解析】

1)先移項(xiàng)再分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可.

(2)根據(jù)配方法的步驟,求出方程的解即可.

(3) 先求出b2-4ac的值,再代入公式求出即可;

(4)利用因式分解解方程

解:(1x-2=x(x-2)

x-2)(1-x=0,
x-2=01-x=0,
x1=2,x2=1

(2)

x2-2x=3,
x2-2x+1=4,

x-12=4,

x-1=

x-1=2x-1=-2

x1=3x2=-1;

(3)
a=2b=-9,c=8
∴△=b2-4ac=-92-4×2×8=170,


x-2+2x+3)(x-2-2x-3=0
3x+1)(-x-5=0,
3x+1=0-x-5=0
x1=,x2=-5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對(duì)稱中心O處,折痕為EF,若菱形ABCD的邊長(zhǎng)為2cm,A=120°,則EF的長(zhǎng)為( 。

A. 2 B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一段120m的籬笆,準(zhǔn)備用這些籬笆借助一段墻角圍成如圖所示兩塊面積相同的矩形場(chǎng)地養(yǎng)雞.

1)如圖所示,若圍成的場(chǎng)地總面積為1750m2,則該場(chǎng)地的寬(圖中縱向)應(yīng)為多少?

2)能不能圍成面積為2000m2的場(chǎng)地?若能,求出此時(shí)籬笆的寬;若不能,求圍成場(chǎng)地面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)用來盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長(zhǎng)為10cm,母線OE(OF)長(zhǎng)為10cm,在母線OF 上的點(diǎn)A 處有一塊爆米花殘?jiān)?/span>FA2cm,一只螞蟻從杯口的點(diǎn)E 處沿圓錐表面爬行到A 點(diǎn),則此螞蟻爬行的最短距離為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx-5x軸交于A(-1,0),B(50)兩點(diǎn),與y軸交與點(diǎn)C.

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn)Dy軸上的點(diǎn),且以B、C、D為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)D的坐標(biāo);

(3)如圖2,CE//x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動(dòng)點(diǎn),過點(diǎn)H且與y軸平行的直線與BC、CE分別相交于點(diǎn)F,G,試探求當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo)及最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點(diǎn),DECF交于點(diǎn)G

1)如圖1,若四邊形ABCD是正方形,且DECF,求證:DE=CF;

2)如圖2,若四邊形ABCD是矩形,且DECF,求證:;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,過點(diǎn)C的直線MNAB,DAB邊上一點(diǎn),過點(diǎn)DDEBC,交直線MNE,垂足為F,連接CD、BE

1)求證:CEAD;

2)當(dāng)DAB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O 為原點(diǎn),點(diǎn) A(4,0),點(diǎn) B(0,3),把△ABO 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn) A、O 旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為 A′、O′,記旋轉(zhuǎn)角為ɑ.

(1)如圖 1,若ɑ=90°,求 AA′的長(zhǎng);

(2)如圖 2,若ɑ=120°,求點(diǎn) O′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個(gè),食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價(jià)格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個(gè)油餅”是 事件;(可能,必然,不可能)

(2)請(qǐng)用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案