【題目】如圖,在△ABC中,AB=AC,△ABC的高BH,CM交于點P.
(1)求證:PB=PC.
(2)若PB=5,PH=3,求AB.
【答案】(1)見解析;(2)10.
【解析】
(1)根據(jù)等邊對等角可得∠ABC=∠ACB,根據(jù)三角形內(nèi)角和定理可得∠MBP=∠HCP,然后可得∠PBC=∠PCB,可證PB=PC;
(2)利用AAS可直接證明△PMB≌△PHC,得到PM=PH=3,BM=CH,然后求出BM,在直角△ABH中利用勾股定理構(gòu)建方程求出AM即可解決問題.
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
又∵∠PMB=∠PHC=90°,∠MPB=∠HPC,
∴∠MBP=∠HCP,
∴∠ABC-∠MBP =∠ACB-∠HCP,即∠PBC=∠PCB,
∴PB=PC;
(2)在△PMB和△PHC中,,
∴△PMB≌△PHC(AAS),
∴PM=PH=3,BM=CH,
∴BM=,AM=AH,
在Rt△ABH中,AB2=AH2+BH2,
∴(4+AM)2= AH2+(5+3)2,即(4+AM)2= AM2+82,
解得:AM=6,
∴AB=AM+BM=6+4=10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:任意兩個數(shù)a 、b ,按規(guī)則c = a +b-ab 擴(kuò)充得到一個新數(shù)c ,稱所得的新數(shù)c 為“如意數(shù)”.
(1)若a =2, b =-3,直接寫出a 、b 的“如意數(shù)” c ;
(2)若a =2, b = x2 +1,求a 、b 的“如意數(shù)” c ,并比較b 與c 的大;
(3)已知a=x2-1,且a 、b 的“如意數(shù)” c = x3 +3x2-1,則b = (用含 x 的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境
小明和小麗共同探究一道數(shù)學(xué)題:
如圖①,在△ABC中,點D是邊BC的中點,∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索發(fā)現(xiàn)
小明的思路是:延長AD至點E,使DE=AD,構(gòu)造全等三角形.
小麗的思路是:過點C作CE∥AB,交AD的延長線于點E,構(gòu)造全等三角形.
選擇小明、小麗其中一人的方法解決問題情境中的問題.
類比應(yīng)用
如圖②,在四邊形ABCD中,對角線AC、BD相交于點O,點O是BD的中點,
AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,則BC的長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘外賣送餐員,送餐員的月工資由底薪1000元加上外賣送單補(bǔ)貼送一次外賣稱為一單構(gòu)成,外賣送單補(bǔ)貼的具體方案如下:
外賣送單數(shù)量 | 補(bǔ)貼元單 |
每月不超過500單 | 6 |
超過500單但不超過m單的部分 | 8 |
超過m單的部分 | 10 |
若某“外賣小哥”4月份送餐400單,則他這個月的工資總額為多少元?
設(shè)5月份某“外賣小哥”送餐x單,所得工資為y元,求y與x的函數(shù)關(guān)系式.
若某“外賣小哥”5月份送餐800單,所得工資為6500元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B為定點,直線l∥AB,P是直線l上一動點.對于下列各值:①線段AB的長②△PAB的周長③△PAB的面積④∠APB的度數(shù)其中不會隨點P的移動而變化的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長江汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈A射線自AM順時針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動的速度是a°/秒,燈B轉(zhuǎn)動的速度是b°/秒,且a、b滿足|a-3b|+(a+b-4)=0.假定這一帶長江兩岸河堤是平行的,即PQ∥MN,且∠BAN=45°
(1)求a、b的值;
(2)若燈B射線先轉(zhuǎn)動20秒,燈A射線才開始轉(zhuǎn)動,在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?
(3)如圖2,兩燈同時轉(zhuǎn)動,在燈A射線到達(dá)AN之前.若射出的光束交于點C,過C作CD⊥AC交PQ于點D,則在轉(zhuǎn)動過程中,∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出其數(shù)量關(guān)系;若改變,請求出其取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正確結(jié)論有( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡求值:已知x,y滿足:x2+y2﹣4x+6y+13=0.求代數(shù)式[(3x﹣y)2﹣4(2x+y)(x﹣y)﹣(x﹣3y)(x+3y)]÷(﹣y)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點的坐標(biāo)分別為(﹣2,2)、(1,8).
(1)求三角形ABO的面積;
(2)若y軸上有一點M,且三角形MAB的面積為10,求M點的坐標(biāo);
(3)如圖,把直線AB以每秒2個單位的速度向右平移,問經(jīng)過多少秒后,該直線與y軸交于點(0,﹣2)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com