【題目】如圖所示:在平面直角坐標系中,OCB的外接圓與y軸交于A(0,),OCB=60°,COB=45°,則OC=

【答案】1+

【解析】

試題分析:連接AB,由圓周角定理知AB必過圓心M,RtABO中,易知BAO=OCB=60°,已知了OA=,即可求得OB的長;

過B作BDOC,通過解直角三角形即可求得OD、BD、CD的長,進而由OC=OD+CD求出OC的長.

解:連接AB,則AB為M的直徑.

RtABO中,BAO=OCB=60°,

OB=OA=×=

過B作BDOC于D.

RtOBD中,COB=45°,

則OD=BD=OB=

RtBCD中,OCB=60°,

則CD=BD=1.

OC=CD+OD=1+

故答案為:1+

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線a∥b,直線ca、b都相交,從所標識的∠1、∠2∠3、∠4、∠5這五個角中任意選取兩個角,則所選取的兩個角互為補角的概率是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形OABC構成,長方形的長OA12m,寬OC4m.按照圖中所示的平面直角坐標系,拋物線可以用y=x2+bx+c表示.在拋物線型拱璧上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m.那么兩排燈的水平距離最小是(  )

A.2mB.4mC.mD.m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象經(jīng)過點A(1,0)、點B(3,0)、點C(4y1),若點D(x2y2)是拋物線上任意一點,有下列結論:

①二次函數(shù)yax2+bx+c的最小值為﹣4a

②若﹣1≤x2≤4,則0≤y2≤5a;

③若y2y1,則x24;

④一元二次方程cx2+bx+a0的兩個根為﹣1

其中正確結論的是_____(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖數(shù)軸的AB、C三點所表示的數(shù)分別為a、bc.若|a﹣b|=3,|b﹣c|=5,且原點OA、B的距離分別為41,則關于O的位置,下列敘述何者正確?(  )

A. A的左邊 B. 介于A、B之間 C. 介于BC之間 D. C的右邊

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,ACBD相交于點E,且DC2CECA

1)求證:BCCD

2)分別延長AB,DC交于點P,若PBOB,CD2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,以AC為直徑的⊙OAB于點D,點E為弧AD的中點,連接CEAB于點F,且BF=BC

1)求證:BC是⊙O的切線;

2)若⊙O的半徑為2=,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小翔在如圖1所示的場地上勻速跑步,他從點A出發(fā),沿箭頭所示方向經(jīng)過點B跑到點C,共用時30秒.他的教練選擇了一個固定的位置觀察小翔的跑步過程.設小翔跑步的時間為t(單位:秒),他與教練的距離為y(單位:米),表示yt的函數(shù)關系的圖象大致如圖2所示,則這個固定位置可能是圖1中的( )

A. M B. N C. P D. Q

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市水費采用階梯收費制度,即:每月用水不超過15噸時,每噸需繳納水費a元,每月用水量超過15噸時,超過15噸的部分按每噸提高b元繳納下表是嘉琪家一至四月份用水量和繳納水費情況.根據(jù)表格提供的數(shù)據(jù),回答:

月份

月用水量(噸)

14

18

16

13

水費(元)

42

60

50

39

1a   元;b   元;

2)求月繳納水費p(元)與月用水量t(噸)之間的函數(shù)關系式;

3)若嘉琪家五月和六月的月繳水費相差24元,求這兩月用水量差的最小值.

查看答案和解析>>

同步練習冊答案