【題目】如圖,在△ABC中,AB=AC,⊙O是△ABC的外接圓,D為弧AC的中點,E是BA延長線上一點,∠DAE=105°.
(1)求∠CAD的度數(shù);
(2)若⊙O的半徑為3,求弧BC的長.
【答案】(1) 35°;(2) .
【解析】
(1)由已知易得,由此可得∠ACB=2∠ACD,由∠DAE=105°,四邊形ABCD是⊙O的內接四邊形易得∠BCD=105°,由此可得3∠ACD=105°,從而可得∠ACD=35°;
(2)由(1)中結論易得∠ABC=∠ACB=70°,由此可得∠BAC=40°,連接OB、OC,則可得∠BOC=80°,這樣由弧長計算公式即可求出的長度了.
(1)∵AB=AC,
∴,
∵D是的中點,
∴,
∴,
∴∠ACB=2∠ACD,
∵四邊形ABCD內接于⊙O,
∴∠BCD=∠EAD=105°
∴∠ACB+∠ACD=105°,即3∠ACD=105°,
∴∠CAD=∠ACD=35°
(2)∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠BAC=40°,
連結OB,OC,則∠BOC=2∠BAC =80°,
∴的長.
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為a的正方形中減掉一個邊長為b的小正方形(a>b)把余下的部分再剪拼成一個長方形.
(1)如圖1,陰影部分的面積是: ;
(2)如圖2,是把圖1重新剪拼成的一個長方形,陰影部分的面積是 ;
(3)比較兩陰影部分面積,可以得到一個公式是 ;
(4)運用你所得到的公式,計算:99.8×100.2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按要求畫圖,并解答問題
(1)如圖,取BC邊的中點D,畫射線AD;
(2)分別過點B、C畫BE⊥AD于點E,CF⊥AD于點F;
(3)BE和CF的位置關系是 ;通過度量猜想BE和CF的數(shù)量關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c>0;②a-b+c>1;③abc>0;④4a-2b+c<1;⑤b+2a=0. 其中所有正確的結論是______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段a、b、c滿足a:b:c=3:2:6,且a+2b+c=26.
(1)求a、b、c的值;
(2)若線段x是線段a、b的比例中項,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種型號汽車油箱容量為40L,每行駛100km耗油10L.設一輛加滿油的該型號汽車行駛路程為x(km),行駛過程中油箱內剩余油量為y(L)
(1)求y與x之間的函數(shù)表達式;
(2)為了有效延長汽車使用壽命,廠家建議每次加油時油箱內剩余油量不低于油箱容量的四分之一,按此建議,求該輛汽車最多行駛的路程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com