【題目】如圖,中,,,的平分線與的垂直平分線交于點(diǎn),將沿(上,)折疊,點(diǎn)與點(diǎn)恰好重合,則____.

【答案】

【解析】

連接OBOC,根據(jù)角平分線的定義求出∠BAO=26°,利用等腰三角形兩底角相等求出∠ABC,根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得OA=OB,再根據(jù)等邊對(duì)等角求出∠OBA,然后求出∠OBC,再根據(jù)等腰三角形的性質(zhì)可得OB=OC,然后求出∠OCE,根據(jù)翻折變換的性質(zhì)可得OE=CE,然后利用等腰三角形兩底角相等列式計(jì)算即可得解.

解:如圖,連接OBOC,
OA平分∠BAC,∠BAC=52°
,

AB=AC,∠BAC=52°,

OD垂直平分AB,
OA=OB
∴∠OBA=BAO=26°,
∴∠OBC=ABC-OBA=64°-26°=38°
由等腰三角形的性質(zhì),OB=OC,
∴∠OCE=OBC=38°,
∵∠C沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,
OE=CE,

故答案為:104°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,AB=3,AD=6,點(diǎn)E是邊AD上的一個(gè)動(dòng)點(diǎn),把△BAE沿BE折疊,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰落在矩形ABCD的對(duì)稱(chēng)軸上,則AE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+b分別與x軸、y軸交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),過(guò)點(diǎn)B的另一條直線交x軸負(fù)半軸于點(diǎn)C,且OB:OC=3:1.

(1)求點(diǎn)B的坐標(biāo)及直線BC對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)在線段OB上存在點(diǎn)P,使得點(diǎn)P到點(diǎn)B,C的距離相等,試求出點(diǎn)P的坐標(biāo);

(3)如果在x軸上方存在點(diǎn)D,使得以點(diǎn)A,B,D為頂點(diǎn)的三角形與△ABC全等,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)本課堂的實(shí)踐中,王老師經(jīng)常讓學(xué)生以問(wèn)題為中心進(jìn)行自主、合作、探究學(xué)習(xí).

(課堂提問(wèn))王老師在課堂中提出這樣的問(wèn)題:如圖1,在RtABC中,∠ACB=90°,∠BAC=30°,那么BCAB有怎樣的數(shù)量關(guān)系?

(互動(dòng)生成)經(jīng)小組合作交流后,各小組派代表發(fā)言.

1)小華代表第3小組發(fā)言:AB=2BC. 請(qǐng)你補(bǔ)全小華的證明過(guò)程.

證明:把ABC沿著AC翻折,得到ADC.

∴∠ACD=ACB=90°,

∴∠BCD=ACD+ACB=90°+90°=180°,

即:點(diǎn)B、C、D共線.

(請(qǐng)?jiān)谙旅嫜a(bǔ)全小華的證明過(guò)程)

2)受到第3小組翻折的啟發(fā),小明代表第2小組發(fā)言:如圖2,在ABC中,如果把條件ACB=90°”改為ACB=135°”,保持BAC=30°”不變,若BC=1,求AB的長(zhǎng).

(能力遷移)我們發(fā)現(xiàn),翻折可以探索圖形性質(zhì),請(qǐng)利用翻折解決下面問(wèn)題.

如圖3,點(diǎn)DABC內(nèi)一點(diǎn),AD=AC,∠BAD=CAD=20°,∠ADB+ACB=210°,則AD、DB、BC三者之間的數(shù)量關(guān)系是 .

(課后拓展)如圖4,在四邊形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=CDB=60°,且AC=1,

ABD的周長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為線段上一動(dòng)點(diǎn)(不與點(diǎn)重合),在同側(cè)分別作等邊和等邊,交于點(diǎn),交于點(diǎn),交于點(diǎn),連接.下列五個(gè)結(jié)論:①;②;③;④DE=DP;⑤.其中正確結(jié)論的個(gè)數(shù)是( )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4, AD=5,則DC的長(zhǎng) ( ).

A. 7 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱(chēng)這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過(guò)點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).

請(qǐng)從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m是不小于﹣1的實(shí)數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2

(1)若x12+x22=6,求m值;

(2)令T=,求T的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案