如圖,在等邊三角形ABC中,AD=BE=CF,D、E、F不是各邊的中點,AE、BF、CD分別交于P、M、H,如果把三個三角形全等叫做一組全等三角形,那么圖中全等三角形有( 。
分析:由在等邊三角形ABC中,AD=BE=CF,利用SAS即可判定△EBA≌△DAC≌△FCB,同理可得△DBC≌△FAB≌△ECA,然后證得∠BAE=∠ACD=∠CBF,AD=BE=CF,∠AEB=∠ADC=∠BFC,利用ASA可判定△ADH≌△CFM≌△BEP,即可得∠ABF=∠CAE=∠BCD,AB=AC=BC,BP=AH=CM,由SAS可判定△ABP≌△ACH≌△CBM,然后根據(jù)AAS即可判定△DBM≌△FAP≌△ECH.
解答:解:∵△BC是等邊三角形,
∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,
在△EBA和△DAC和△FCB中,
AB=AC=BC
∠ABE=∠DAC=∠FCB
BE=AD=CF
,
∴△EBA≌△DAC≌△FCB(SAS);
∵AB=AC=BC,AD=BE=CF,
∴BD=AF=EC,
同理:△DBC≌△FAB≌△ECA(SAS);
∴∠BAE=∠ACD=∠CBF,AD=BE=CF,∠AEB=∠ADC=∠BFC,
在△ADH和△CFM和△BEP中,
∠BAE=∠ACD=∠CBF
AD=CF=BE
∠ADC=∠BFC=∠AEB
,
∴△ADH≌△CFM≌△BEP(ASA),
∵∠ABF=∠CAE=∠BCD,AB=AC=BC,BP=AH=CM,
在△ABP和△ACH和△CBM中,
AB=AC=BC
∠ABF=∠CAE=∠BCD
BP=AH=CM
,
∴△ABP≌△ACH≌△CBM(SAS);
∵∠AHD=∠EHC,∠FMC=∠DMB,∠BPE=∠APF,∠AHD=∠FMC=∠BPE
∴∠EHC=∠DMB=∠APF
∵BD=AF=EC,∠DBM=∠FAP=∠ECH,
在△DBM和△FAP和△ECH中,
∠DMB=∠APF=∠BHC
∠DBM=∠FAP=∠ECH
BD=AF=EC

∴△DBM≌△FAP≌△ECH(AAS).
∴共5組.
故選B.
點評:此題考查了等邊三角形的性質(zhì)與全等三角形的判定與性質(zhì).此題難度適中,解題的關鍵是注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等邊三角形ABC的邊BC、AC上分別取點D、E,使BD=CE,AD與BE相交于點P.則∠APE的度數(shù)為
 
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,在等邊三角形ABC中,三條中線AE,BD,CF相交于點O,則等邊三角形ABC中,從△BOF到△COD需要經(jīng)過的變換是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等邊三角形ABC中,BD⊥BC,過A作AD⊥BD于D,已知△ABC周長為M,則AD=( 。
A、
M
2
B、
M
6
C、
M
8
D、
M
12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊三角形ABC的AC邊上取中點D,BC的延長線上取一點E,使CE=CD,求證:△BDE為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊三角形△ABC中,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,且PR=PS,下面給出的四個結論:①點P在∠A的平分線上,②AS=AR,③QP∥AR,④△BRP≌△QSP,則其中正確的是( 。

查看答案和解析>>

同步練習冊答案