【題目】如圖,拋物線y=x22x+c的頂點(diǎn)A在直線ly=x5上.

1)求拋物線頂點(diǎn)A的坐標(biāo);

2)設(shè)拋物線與y軸交于點(diǎn)B,與x軸交于點(diǎn)CDC點(diǎn)在D點(diǎn)的左側(cè)),試判斷ABD的形狀;

3)在直線l上是否存在一點(diǎn)P,使以點(diǎn)P、ABD為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1A1,﹣4);

2ABD是直角三角形,理由見(jiàn)解析;

3)存在點(diǎn)P﹣2,﹣7)或P4﹣1),使以點(diǎn)A、BD、P為頂點(diǎn)的四邊形是平行四邊形.

【解析】試題分析:(1)先根據(jù)拋物線的解析式得出其對(duì)稱軸方程,由此得到頂點(diǎn)A的橫坐標(biāo),然后代入直線l的解析式中即可求出點(diǎn)A的坐標(biāo).

2)由A點(diǎn)坐標(biāo)可確定拋物線的解析式,進(jìn)而可得到點(diǎn)B的坐標(biāo).則AB、AD、BD三邊的長(zhǎng)可得,然后根據(jù)邊長(zhǎng)確定三角形的形狀.

3)若以點(diǎn)PA、BD為頂點(diǎn)的四邊形是平行四邊形,應(yīng)分①AB為對(duì)角線、②AD為對(duì)角線兩種情況討論,然后結(jié)合勾股定理以及邊長(zhǎng)的等量關(guān)系列方程求出P點(diǎn)的坐標(biāo).

1頂點(diǎn)A的橫坐標(biāo)為,且頂點(diǎn)在y=x﹣5上,

當(dāng)x=1時(shí),y=1-5=-4

∴A1,-4).

2)將A1,-4)代入y=x2-2x+c,可得,1-2+c=-4,c=-3,

∴y=x2-2x-3,

∴B0,-3

當(dāng)y=0時(shí),x2-2x-3=0,x1=-1x2=3

∴C-1,0),D3,0),

∵BD2=OB2+OD2=18,AB2=4-32+12=2,AD2=3-12+42=20,

∴BD2+AB2=AD2,

∴∠ABD=90°,即△ABD是直角三角形.

3)由題意知:直線y=x-5y軸于點(diǎn)E0,-5),交x軸于點(diǎn)F5,0

∴OE=OF=5,

∵OB=OD=3

∴△OEF△OBD都是等腰直角三角形

∴BD∥l,即PA∥BD

則構(gòu)成平行四邊形只能是PADBPABD,如圖,

過(guò)點(diǎn)Py軸的垂線,過(guò)點(diǎn)Ax軸的垂線交過(guò)P且平行于x軸的直線于點(diǎn)G

設(shè)Px1,x1-5),則G1,x1-5

PG=|1-x1|AG=|5-x1-4|=|1-x1|

PA=BD=3

由勾股定理得:

1-x12+1-x12=18,x12-2x1-8=0,x1=-24

∴P-2,-7)或P4,-1),

存在點(diǎn)P-2,-7)或P4,-1)使以點(diǎn)A、B、D、P為頂點(diǎn)的四邊形是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)有一塊長(zhǎng)為30m,寬為24m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈爾濱地鐵二號(hào)線正在進(jìn)行修建,現(xiàn)有大量的殘土需要運(yùn)輸.某車隊(duì)有載重量為8噸、10噸的卡車共12臺(tái),全部車輛運(yùn)輸一次可以運(yùn)輸110噸殘土.

(1)求該車隊(duì)有載重量8噸、10噸的卡車各多少輛?

(2)隨著工程的進(jìn)展,該車隊(duì)需要一次運(yùn)輸殘土不低于165噸,為了完成任務(wù),該車隊(duì)準(zhǔn)備再新購(gòu)進(jìn)這兩種卡車共6輛,則最多購(gòu)進(jìn)載重量為8噸的卡車多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為解方程(x2﹣12﹣5x2﹣1+4=0,我們可以將x2﹣1視為一個(gè)整體,然后設(shè)x2﹣1=y,則

x2﹣1=y2,原方程化為y2﹣5y+4=0

解得y1=1y2=4

當(dāng)y=1時(shí),x21=1x2=2x=±;

當(dāng)y=4時(shí),x21=4,x2=5,x=±

∴原方程的解為x1=,x2=,x3=,x4=

解答問(wèn)題:

1)填空:在由原方程得到方程①的過(guò)程中,利用   法達(dá)到了降次的目的,體現(xiàn)了   的數(shù)學(xué)思想.

2)解方程:x4﹣x2﹣6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1)、點(diǎn)B(0,1+t)、C(0,1﹣t)(t>0),點(diǎn)P在以D(3,5)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿足∠BPC=90°,則t的最小值是( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:a、b為有理數(shù),下列說(shuō)法: ab互為相反數(shù),則;,則,則是正數(shù).其中正確的有

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,BAD=100°,DBC=80°.

(1)求證:BD=CD;

(2)若圓O的半徑為9,求的長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1和圖2,半圓O的直徑AB=4,點(diǎn)P(不與點(diǎn)A,B重合)為半圓上一點(diǎn),將圖形沿著BP折疊,分別得到點(diǎn)A,O的對(duì)稱點(diǎn)A′,O′,設(shè)∠ABP=α.

(1)如圖1,當(dāng)α=22.5°時(shí),過(guò)點(diǎn)A′A′CAB,判斷A′C與半圓O的位置關(guān)系,并說(shuō)明理由.

(2)如圖2,當(dāng)α=   時(shí),點(diǎn)O′落在上.當(dāng)α=   時(shí),BA′與半圓O相切.

(3)當(dāng)線段B O′與半圓O只有一個(gè)公共點(diǎn)B時(shí),α的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究:如圖,已知AMBN,∠A60°,點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合).BCBD別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D

1)求∠ABN、∠CBD的度數(shù);根據(jù)下列求解過(guò)程填空.

解:∵AMBN

∴∠ABN+A180°

∵∠A60°,

∴∠ABN   

∴∠ABP+PBN120°,

BC平分∠ABPBD平分∠PBN,

∴∠ABP2CBP、∠PBN   ,(   

2CBP+2DBP120°,

∴∠CBD=∠CBP+DBP   

2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫(xiě)出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫(xiě)出變化規(guī)律.

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),直接寫(xiě)出∠ABC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案