【題目】綜合與探究:如圖,已知AM∥BN,∠A=60°,點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合).BC,BD別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)求∠ABN、∠CBD的度數(shù);根據(jù)下列求解過(guò)程填空.
解:∵AM∥BN,
∴∠ABN+∠A=180°
∵∠A=60°,
∴∠ABN= ,
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP、∠PBN= ,( )
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP= .
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫(xiě)出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫(xiě)出變化規(guī)律.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),直接寫(xiě)出∠ABC的度數(shù).
【答案】(1)120°,2∠PBD,角平分線的定義,60°(2)∠APB=2∠ADB.不隨點(diǎn)P運(yùn)動(dòng)變化,見(jiàn)解析;(3)30°
【解析】
(1)由AM∥BN,∠A=60°可得∠ABP+∠PBN=120°,再根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=120°,即∠CBD=∠CBP+∠DBP=60°;
(2)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB=2∠ADB;
(3)由AM∥BN得∠ACB=∠CBN,當(dāng)∠ACB=∠ABD時(shí)有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)∠ABN=120°,∠CBD=60°可得答案.
解:
(1)∵AM∥BN,
∴∠ABN+∠A=180°,
∵∠A=60°,
∴∠ABN=120°
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP、∠PBN=2∠PBD,(角平分線的定義),
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP=60°.
故答案為120°,2∠PBD,角平分線的定義,60°.
(2)∠APB與∠ADB之間數(shù)量關(guān)系是:∠APB=2∠ADB.不隨點(diǎn)P運(yùn)動(dòng)變化.
理由是:∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN(兩直線平行內(nèi)錯(cuò)角相等),
∵BD平分∠PBN(已知),
∴∠PBN=2∠DBN(角平分線的定義),
∴∠APB=∠PBN═2∠DBN=2∠ADB(等量代換),
即∠APB=2∠ADB.
(3)結(jié)論:∠ABC=30°.
理由:∵AM∥BN,∴∠ACB=∠CBN,
當(dāng)∠ACB=∠ABD時(shí),則有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
由(1)可知∠ABN=120°,∠CBD=60°,
∴∠ABC+∠DBN=60°,
∴∠ABC=30°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x22x+c的頂點(diǎn)A在直線l:y=x5上.
(1)求拋物線頂點(diǎn)A的坐標(biāo);
(2)設(shè)拋物線與y軸交于點(diǎn)B,與x軸交于點(diǎn)C、D(C點(diǎn)在D點(diǎn)的左側(cè)),試判斷△ABD的形狀;
(3)在直線l上是否存在一點(diǎn)P,使以點(diǎn)P、A、B、D為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】材料閱讀:對(duì)于一個(gè)圓和一個(gè)正方形給出如下定義:若圓上存在到此正方形四條邊距離都相等的點(diǎn),則稱(chēng)這個(gè)圓是該正方形的“等距圓”.
如圖1,在平面直角坐標(biāo)系xOy中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(2,4),頂點(diǎn)C、D在x軸上,且點(diǎn)C在點(diǎn)D的左側(cè).
(1)當(dāng)r=2時(shí),在P1(2,0),P2(﹣4,2),P3(2,2),P4(2﹣2,0)中可以成為正方形ABCD的“等距圓”的圓心的是 ;
(2)若點(diǎn)P坐標(biāo)為(﹣2,﹣1),則當(dāng)⊙P的半徑r= 時(shí),⊙P是正方形ABCD的“等距圓”.試判斷此時(shí)⊙P與直線BD的位置關(guān)系?并說(shuō)明理由.
(3)如圖2,在正方形ABCD所在平面直角坐標(biāo)系xOy中,正方形EFGH的頂點(diǎn)F的坐標(biāo)為(8,2),頂點(diǎn)E、H在y軸上,且點(diǎn)H在點(diǎn)E的上方.若⊙P同時(shí)為上述兩個(gè)正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種長(zhǎng)方形餐桌的四周可坐6人用餐,現(xiàn)把若干張這樣的餐桌按如圖所示的方式進(jìn)行拼接.
(1)若把4張這樣的餐桌拼接起來(lái),四周可坐 人;
(2)若把n張這樣的餐桌拼接起來(lái),四周可坐 人;
(3)若把9張這樣的餐桌拼接起來(lái),四周可坐 人;
(4)若用餐的人數(shù)有50人,則這樣的餐桌需要多少?gòu)垼?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每逢金秋送爽之時(shí),正是大閘蟹上市的旺季,也是吃蟹的最好時(shí)機(jī),可謂膏肥黃美.
某經(jīng)銷(xiāo)商購(gòu)進(jìn)一批雌蟹、雄蟹共1000只,進(jìn)價(jià)均為每只40元,然后以雌蟹每只75元、雄蟹每只60元的價(jià)格售完,共獲利29000元.
(1)求該經(jīng)銷(xiāo)商分別購(gòu)進(jìn)雌蟹、雄蟹各多少只?
(2)民間有“九雌十雄”的說(shuō)法,即九月吃雌蟹,十月吃雄蟹.十月份,在進(jìn)價(jià)不變的情況下該經(jīng)銷(xiāo)商決定調(diào)整價(jià)格,將雌蟹的價(jià)格在九月份的基礎(chǔ)上下調(diào)(降價(jià)后售價(jià)不低于進(jìn)價(jià)),雄蟹的價(jià)格上漲,同時(shí)雌蟹的銷(xiāo)量較九月下降了,雄蟹的銷(xiāo)量上升了,結(jié)果十月份的銷(xiāo)售額比九月份增加了1000元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過(guò)點(diǎn)E,且交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架梯子長(zhǎng)25米,斜靠在一面墻上,梯子底端離墻7米。
(1)這個(gè)梯子的頂端離地面有多高?
(2)如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動(dòng)了幾米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)(﹣1,y1),(2,y2),在反比例函數(shù)y=﹣的圖象上,則下列關(guān)系式正確的是( )
A.y3<y2<y1B.y2<y3<y1
C.y3<y1<y2D.y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地出租車(chē)計(jì)費(fèi)方法如圖,x(km)表示行駛里程,y(元)表示車(chē)費(fèi),請(qǐng)根據(jù)圖象解答下列問(wèn)題:
(1)該地出租車(chē)的起步價(jià)是 元;
(2)當(dāng)x>2時(shí),求y與x之間的函數(shù)關(guān)系式;
(3)若某乘客有一次乘出租車(chē)的里程為18km,則這位乘客需付出租車(chē)車(chē)費(fèi)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com