【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn) F,過(guò)點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長(zhǎng).
【答案】(1)證明見試題解析;(2)證明見試題解析;(3).
【解析】試題分析:(1)如圖,連接OE,證明OE⊥PE即可得出PE是⊙O的切線;
(2)由圓周角定理得到∠AEB=∠CED=90°,進(jìn)而得到∠3=∠4,結(jié)合已知條件證得結(jié)論;
(3)設(shè)EF=x,則CF=2x,在RT△OEF中,根據(jù)勾股定理求出EF的長(zhǎng),進(jìn)而求得BE,CF的長(zhǎng),在RT△AEB中,根據(jù)勾股定理求出AE的長(zhǎng),然后根據(jù)△AEB∽△EFP,求出PF的長(zhǎng),即可求得PD的長(zhǎng).
試題解析:(1)如圖,連接OE.∵CD是圓O的直徑,∴∠CED=90°,∵OC=OE,∴∠1=∠2,又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵點(diǎn)E在圓上,∴PE是⊙O的切線;
(2)∵AB、CD為⊙O的直徑,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等),又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;
(3)設(shè)EF=x,則CF=2x,∵⊙O的半徑為5,∴OF=2x﹣5,在RT△OEF中, ,即,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB為⊙O的直徑,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組數(shù)中,不能構(gòu)成直角三角形的是( ).
A. 3,4,5 B. 6,8,10 C. 4,5,6 D. 5,12,13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,延長(zhǎng)CB至E,延長(zhǎng)AD至F,使得BE=DF,連接EF與對(duì)角線AC交于點(diǎn)O.求證:OE=OF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在創(chuàng)建全國(guó)森林城市的活動(dòng)中,我區(qū)一“青年突擊隊(duì)”決定義務(wù)整修一條1000米長(zhǎng)的綠化帶,開工后,附近居民主動(dòng)參加到義務(wù)勞動(dòng)中,使整修的速度比原計(jì)劃提高了一倍,結(jié)果提前4小時(shí)完成任務(wù),問(wèn)“青年突擊隊(duì)”原計(jì)劃每小時(shí)整修多少米長(zhǎng)的綠化帶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O為直線AD上一點(diǎn),∠AOC與∠AOB互補(bǔ),OM、ON分別是∠AOC、∠AOB的平分線,∠MON=56°.
⑴ ∠COD與∠AOB相等嗎?請(qǐng)說(shuō)明理由;
⑵ 求∠BOC的度數(shù);
⑶ 求∠AOB與∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁參加體育訓(xùn)練,近期10次跳繩測(cè)試的平均成績(jī)都是每分鐘174個(gè),其方差如下表:
選手 | 甲 | 乙 | 丙 | 丁 |
方差 | 0.023 | 0.018 | 0.020 | 0.021 |
則這10次跳繩中,這四個(gè)人發(fā)揮最穩(wěn)定的是( )
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點(diǎn)D的邊AC上,將邊OA沿OD折疊,點(diǎn)A的對(duì)應(yīng)邊為A'.若點(diǎn)A'到矩形較長(zhǎng)兩對(duì)邊的距離之比為1:3,則點(diǎn)A'的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問(wèn)卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)參與本次問(wèn)卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該市約有12萬(wàn)人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】BM是△ABC中AC邊上的中線,AB=5cm,BC=3cm,那么△ABM與△BCM的周長(zhǎng)之差為___cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com