【題目】(概念學(xué)習(xí))

規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,如2÷2÷2,(﹣3÷(﹣3÷(﹣3÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2,讀作“2的圈3次方,(﹣3÷(﹣3÷(﹣3÷(﹣3)記作(﹣3,讀作3的圈4次方,一般地,把 a≠0)記作a,讀作“a的圈n次方

1)(初步探究)

直接寫出計(jì)算結(jié)果:2=_______,(-=_______;

2)(深入思考)

我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?

Ⅰ.試一試:仿照上面的算式,將下列運(yùn)算結(jié)果直接寫成冪的形式.

(﹣3=_______;5=_______; (-) =_______

Ⅱ. 想一想:將一個(gè)非零有理數(shù)a的圈n次方寫成冪的形式等于_______;

Ⅲ. 算一算:

12÷(-)×(-2)(-)÷3.

【答案】1)【初步探究】

,-8;

2)【深入思考】

Ⅰ. ;;

Ⅱ.

Ⅲ.

【解析】

1)【初步探究】分別按公式進(jìn)行計(jì)算即可;

2)【深入思考】
Ⅰ.把除法化為乘法,第一個(gè)數(shù)不變,從第二個(gè)數(shù)開始依次變?yōu)榈箶?shù),由此分別得出結(jié)果;
Ⅱ.結(jié)果第一個(gè)數(shù)不變?yōu)?/span>a,第二個(gè)數(shù)及后面的數(shù)變?yōu)?/span>,則

Ⅲ.將第二問(wèn)的規(guī)律代入計(jì)算,注意運(yùn)算順序.

解:(1)【初步探究】

故答案為:,-8

2)【深入思考】

Ⅰ. ;

故答案為:;;

Ⅱ.

Ⅲ.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問(wèn)這次表演是否成功?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在已知的平面直角坐標(biāo)系中,△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,若A,B兩點(diǎn)的坐標(biāo)分別是A(-1,0),B(0,3).

(1)將△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,畫出△A1B1C1;

(2)以點(diǎn)O為位似中心,與△ABC位似的△A2B2C2滿足A2B2:AB=2:1,請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫出△A2B2C2,并直接填寫△A2B2C2的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)分別為A(﹣11)、B0,﹣2)、C10),點(diǎn)P0,2)繞點(diǎn)A旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞點(diǎn)B旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞點(diǎn)C旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞點(diǎn)A旋轉(zhuǎn)180°得到點(diǎn),…,按此作法進(jìn)行下去,則點(diǎn)的坐標(biāo)為( )

A.0,4B.(﹣2,0C.2,﹣4D.(﹣2,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A13),B2,5),C4,2)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)

1)將ABC平移,使點(diǎn)A移動(dòng)到點(diǎn)A1,請(qǐng)畫出A1B1C1

2)作出ABC關(guān)于O點(diǎn)成中心對(duì)稱的A2B2C2,并直接寫出A2,B2C2的坐標(biāo);

3A1B1C1A2B2C2是否成中心對(duì)稱?若是,請(qǐng)寫出對(duì)稱中心的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列兩個(gè)等式:22×+1,55×+1,給出定義如下

我們稱使等式abab+1成立的一對(duì)有理數(shù)“ab”為共生有理數(shù)對(duì)”,記為(ab

1)通過(guò)計(jì)算判斷數(shù)對(duì)“﹣2,1”,“4,”是不是“共生有理數(shù)對(duì)”;

2)若(6,a)是“共生有理數(shù)對(duì)”,求a的值;

3)若(m,n)是“共生有理數(shù)對(duì)”,則“﹣n,﹣m   “共生有理數(shù)對(duì)”(填“是”或“不是”),并說(shuō)明理由;

4)若(m,n)是共生有理數(shù)對(duì)(其中n1),直接用含n的代數(shù)式表示m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

1637 年笛卡兒(RDescartes,1596 1650)在其《幾何學(xué)》中,首次應(yīng)用待定系數(shù)法將 4 次方程分解為兩個(gè) 2 次方程求解,并最早給出因式分解定理.

他認(rèn)為,若一個(gè)高于二次的關(guān)于 x 的多項(xiàng)式能被 () 整除,則其一定可以分解為 () 與另外一個(gè)整式的乘積,而且令這個(gè)多項(xiàng)式的值為 0 時(shí), x = a 是關(guān)于 x 的這個(gè)方程的一個(gè)根.

例如:多項(xiàng)式 可以分解為 () 與另外一個(gè)整式 M 的乘積,即

時(shí),可知 x =1 為該方程的一個(gè)根.

關(guān)于笛卡爾的待定系數(shù)法原理,舉例說(shuō)明如下: 分解因式:

觀察知,顯然 x=1 時(shí),原式 = 0 ,因此原式可分解為 () 與另一個(gè)整式的積.

令:,則=,因等式兩邊 x 同次冪的系數(shù)相等,則有:,得,從而

此時(shí),不難發(fā)現(xiàn) x= 1 是方程 的一個(gè)根.

根據(jù)以上材料,理解并運(yùn)用材料提供的方法,解答以下問(wèn)題:

1)若 是多項(xiàng)式 的因式,求 a 的值并將多項(xiàng)式分解因式;

2)若多項(xiàng)式 含有因式 ,求a+ b 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)冰箱、彩電進(jìn)行銷售.相關(guān)信息如下表:

進(jìn)價(jià)(元/臺(tái))

售價(jià)(元/臺(tái))

冰箱

2500

彩電

2000

1)若商場(chǎng)用80000元購(gòu)進(jìn)冰箱的數(shù)量與用64000元購(gòu)進(jìn)彩電的數(shù)量相等,求表中a的值.

2)為了滿足市場(chǎng)需要求,商場(chǎng)決定用不超過(guò)9萬(wàn)元采購(gòu)冰箱、彩電共50臺(tái),且冰箱的數(shù)量不少于彩電數(shù)量的

該商場(chǎng)有哪幾種進(jìn)貨方式?

若該商場(chǎng)將購(gòu)進(jìn)的冰箱、彩電全部售出,獲得的最大利潤(rùn)為w元,請(qǐng)用所學(xué)的函數(shù)知識(shí)求出w的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形紙片ABCD中,AB=6,BC=8

1)將矩形紙片沿BD折疊,點(diǎn)A落在點(diǎn)E處(如圖①),設(shè)DEBC相交于點(diǎn)F,求BF的長(zhǎng);

2)將矩形紙片折疊,使點(diǎn)B與點(diǎn)D重合(如圖②),求折痕GH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案