【題目】如圖,已知在矩形中,,分別是邊,的中點(diǎn),,分別是線段,的中點(diǎn).
(1)求證:;
(2)判斷四邊形是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)________時(shí),四邊形是正方形(只寫結(jié)論,不需證明)
【答案】(1)詳見解析;(2)四邊形是菱形,詳見解析;(3)
【解析】
(1)求出AB=DC,∠A=∠D=90°,AM=DM,根據(jù)全等三角形的判定定理推出即可;
(2)根據(jù)三角形中位線定理求出NE∥MF,NE=MF,得出平行四邊形,求出BM=CM,推出ME=MF,根據(jù)菱形的判定推出即可;
(3)求出∠EMF=90°,根據(jù)正方形的判定推出即可.
(1)證明:∵四邊形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M為AD中點(diǎn),
∴AM=DM,
在△ABM和△DCM,
,
∴△ABM≌△DCM(SAS);
(2)答:四邊形MENF是菱形.
證明:∵N、E、F分別是BC、BM、CM的中點(diǎn),
∴NE∥CM,NE=CM,MF=CM,
∴NE=FM,NE∥FM,
∴四邊形MENF是平行四邊形,
由(1)知△ABM≌△DCM,
∴BM=CM,
∵E、F分別是BM、CM的中點(diǎn),
∴ME=MF,
∴平行四邊形MENF是菱形;
(3)解:當(dāng)四邊形MENF是正方形時(shí),則∠EMF=90°,
∵△ABM≌△DCM,
∴∠AMB=∠DMC=45°,
∴△ABM、△DCM為等腰直角三角形,
∴AM=DM=AB,
∴AD=2AB,
當(dāng)AB:AD=1:2時(shí),四邊形MENF是正方形.
故答案為:1:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為準(zhǔn)備母親節(jié)禮物,同學(xué)們委托小明用其支付寶余額團(tuán)購鮮花或禮盒.每束鮮花的售價(jià)相同,每份禮盒的售價(jià)也相同.若團(tuán)購15束鮮花和18份禮盒,余額差80元;若團(tuán)購18束鮮花和15份禮盒,余額剩70元.若團(tuán)購19束鮮花和14份禮盒,則支付寶余額剩_______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形DFBE是矩形,C,A分別是DF,BE延長線上的點(diǎn), , 求證:
(1)AE=CF.
(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
某商店經(jīng)銷《超能陸戰(zhàn)隊(duì)》超萌“小白”(圖1)玩具,“小白”玩具每個(gè)進(jìn)價(jià)60元.為進(jìn)行促銷,商店制定如下“優(yōu)惠”方案:如果一次銷售數(shù)量不超過10個(gè),則銷售單價(jià)為100元/個(gè);如果一次銷售數(shù)量超過10個(gè),每增加一個(gè),所有“小白”玩具銷售單價(jià)降低1元/個(gè),但單價(jià)不得低于80元/個(gè).一次銷售“小白”玩具的單價(jià)y(元/個(gè))與銷售數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖2所示.
(1)求m的值并解釋射線BC所表示的實(shí)際意義;
(2)寫出該店當(dāng)一次銷售x個(gè)時(shí),所獲利潤w(元)與x(個(gè))之間的函數(shù)關(guān)系式;
(3)店長經(jīng)過一段時(shí)間的銷售發(fā)現(xiàn):即并不是銷量越大利潤越大(比如,賣25個(gè)賺的錢反而比賣30個(gè)賺的錢多).為了不出現(xiàn)這種現(xiàn)象,在其他條件不變的情況下,店長應(yīng)把原來的最低單價(jià)80(元/個(gè))至少提高到多少元/個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)E是射線BC上的點(diǎn),直線AF與直線AB關(guān)于直線AE對(duì)稱,直線AF交射線CD于點(diǎn)F.
(1)如圖①,當(dāng)點(diǎn)E是線段BC的中點(diǎn)時(shí),求證:AF=AB+CF;
(2)如圖②,當(dāng)∠BAE=30°時(shí),求證:AF=2AB﹣2CF;
(3)如圖③,當(dāng)∠BAE=60°時(shí),(2)中的結(jié)論是否還成立?若不成立,請(qǐng)判斷AF與AB、CF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)“低碳生活”,人們常選擇以自行車作為代步工具,如圖是一輛自行車的部分幾何示意圖,其中車架檔AC與CD的長分別為45 cm和60 cm,且它們互相垂直,座桿CE的長為20 cm,點(diǎn)A,C,E在同一條直線上,且∠CAB=75°.(參考數(shù)據(jù):sin 75°≈0.966,cos 75°≈0.259,tan 75°≈3.732)
(1)求車架檔AD的長;
(2)求車座點(diǎn)E到車架檔AB的距離(結(jié)果精確到1 cm).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,都是由邊長為1的正方體疊成的立體圖形,例如第(1)個(gè)圖形由1個(gè)正方體疊成,第(2)個(gè)圖形由4個(gè)正方體疊成,第(3)個(gè)圖形由10個(gè)正方體疊成,依次規(guī)律,第(8)個(gè)圖形有多少個(gè)正方體疊成( 。
A.120個(gè)B.121個(gè)C.122個(gè)D.123個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時(shí),y2﹣y1=4;
④2AB=3AC;
其中正確結(jié)論是( 。
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com