【題目】如圖1CE平分∠ACD,AE平分∠BAC∠EAC+∠ACE=90°

1)請(qǐng)判斷ABCD的位置關(guān)系,并說明理由;

2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD.當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE∠MCD是否存在確定的數(shù)量關(guān)系?并說明理由;

3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外),∠CPQ+∠CQP∠BAC有何數(shù)量關(guān)系?直接寫出結(jié)論,其數(shù)量關(guān)系為

【答案】1)平行,理由見解析(2)∠BAEMCD90°,理由見解析(3)∠BAC=∠CPQ+∠CQP

【解析】

1)由角平分線的性質(zhì)得出∠BAC2EAC,∠ACD2ACE,推出∠BAC+∠ACD180°,即可得出結(jié)論;

2)過EEFAB,則EFABCD,得出∠BAE=∠AEF,∠FEC=∠DCE,由∠AEC90°,推出∠BAE+∠ECD90°,∠ECDMCD,得出∠BAEMCD90°;

3)由平行線的性質(zhì)得出∠BAC+∠ACD180°,由三角形內(nèi)角和定理得出∠CPQ+∠CQP+∠PCQ180°,即可得出結(jié)果.

1ABCD;理由如下:

CE平分∠ACDAE平分∠BAC,

∴∠BAC2EAC,∠ACD2ACE,

∵∠EAC+∠ACE90°,

∴∠BAC+∠ACD180°,

ABCD;

2)∠BAEMCD90°;理由如下:

EEFAB,如圖2所示:

ABCD,

EFABCD

∴∠BAE=∠AEF,∠FEC=∠DCE,

∵∠AEC90°,

∴∠BAE+∠ECD90°,

∵∠MCE=∠ECD

∴∠ECDMCD

∴∠BAEMCD90°;

3)∠BAC=∠CPQ+∠CQP;理由如下:

ABCD,

∴∠BAC+∠ACD180°

∵∠CPQ+∠CQP+∠PCQ180°,

即(∠CPQ+∠CQP)+∠ACD180°,

∴∠BAC=∠CPQ+∠CQP

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購(gòu)進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購(gòu)進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購(gòu)進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.

(1)求購(gòu)進(jìn)A、B兩種紀(jì)念品每件各需多少元?

(2)若該商店決定購(gòu)進(jìn)這兩種紀(jì)念品共100件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?

(3)若銷售每件A種紀(jì)念品可獲利潤(rùn)20元,每件B種紀(jì)念品可獲利潤(rùn)30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.

(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求點(diǎn)P的速度及AC的長(zhǎng);
(3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn)0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點(diǎn)E、F.
①說出線段EF的長(zhǎng)在圖1中所表示的實(shí)際意義;
②當(dāng)0<x<6時(shí),求線段EF長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校德育處組織“四品八德”好少年評(píng)比活動(dòng),每班只有一個(gè)名額.現(xiàn)某班有甲、乙、丙三名學(xué)生參與競(jìng)選,第一輪根據(jù)“品行規(guī)范”、“學(xué)習(xí)規(guī)范”進(jìn)行量化考核.甲乙丙他們的量化考核成績(jī)(單位:分)分別用兩種方式進(jìn)行了統(tǒng)計(jì),如下表和圖1

1)請(qǐng)將表和圖1中的空缺部分補(bǔ)充完整;

2)競(jìng)選的第二輪是由本班的50位學(xué)生進(jìn)行投票,每票計(jì)6分,甲、乙、丙三人的得票情況如圖2(沒有棄權(quán)票,每名學(xué)生只能選一人).

①若將“品行規(guī)范”、“學(xué)習(xí)規(guī)范”、“得票”三項(xiàng)測(cè)試得分按4:3:3的比例確定最后成績(jī),通過計(jì)算誰將會(huì)被推選為!八钠钒说隆焙蒙倌辏

②若規(guī)定得票測(cè)試分占20%,要使甲學(xué)生最后得分不低于91分,則“品行規(guī)范”成績(jī)?cè)诳偡种兴急壤娜≈捣秶鷳?yīng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠E=F=90°,∠B=C,AE=AF,有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=EAM;④△ACN≌△ABM.其中正確的結(jié)論有_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年疫情期間,某公司為了擴(kuò)大經(jīng)營(yíng),決定購(gòu)進(jìn)6臺(tái)機(jī)器用于生產(chǎn)口罩.現(xiàn)有甲、乙兩種機(jī)器供選擇,其中每種機(jī)器的價(jià)格和每臺(tái)機(jī)器日生產(chǎn)口罩的數(shù)量如下表所示.經(jīng)過預(yù)算,本次購(gòu)買機(jī)器所耗資金不能超過36萬元,

1)按該公司要求可以有幾種購(gòu)買方案?

2)如果該公司購(gòu)進(jìn)的6臺(tái)機(jī)器的日生產(chǎn)能力不能低于42萬個(gè),那么為了節(jié)約資金應(yīng)選擇什么樣的購(gòu)買方案?

價(jià)格(萬元/臺(tái))

7

5

每臺(tái)日產(chǎn)量(萬個(gè))

10

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )
A.不可能事件發(fā)生的概率為0
B.隨機(jī)事件發(fā)生的概率為
C.概率很小的事件不可能發(fā)生
D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AE、BF是角平分線,它們相交于點(diǎn)O,AD是高,BAC=50°C=70°,求DAEAOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,ACB90°,ABCBAC的角平分線相交于點(diǎn)P,連接CP,過點(diǎn)PDECP分別交ACBC于點(diǎn)D、E,

(1)BAC40°,求APBADP度數(shù);

(2)探究:通過(1)的計(jì)算,小明猜測(cè)APBADP,請(qǐng)你說明小明猜測(cè)的正確性(要求寫出過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案