【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,點D⊙O上一點,連結(jié)AD、OD、BD,∠BAD=∠B=30°.

(1)求證:BD⊙O的切線.

(2)OA=8,求OA、OD圍成的扇形的面積.

【答案】(1)證明見解析(2)

【解析】

(1)求出∠A=ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根據(jù)切線的判定推出即可;

(2)根據(jù)扇形的面積公式即可求出答案.

(1)證明:∵OA=OD,A=B=30°,

∴∠A=ADO=30°,

∴∠DOB=A+ADO=60°,

∴∠ODB=180°﹣DOB﹣B=90°,

OD是半徑,

BD是⊙O的切線;

(2)∵∠DOB=60°,

∴∠AOD=120°,

AO=8,

OA、OD圍成的扇形的面積=π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,則下列結(jié)論中不正確的是(  )

A. c<0

B. y的最小值為負值

C. 當(dāng)x>1時,yx的增大而減小

D. x=3是關(guān)于x的方程ax2+bx+c=0的一個根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盒子里裝有12張紅色卡片,16張黃色卡片,4張黑色卡片和若干張藍色卡片,每張卡片除顏色外都相同,從中任意摸出一張卡片,摸到紅色卡片的概率是0.24.

(1)從中任意摸出一張卡片,摸到黑色卡片的概率是多少?

(2)求盒子里藍色卡片的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(-5,0),B(-3,0),點C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點P從點Q(4,0)出發(fā),沿x軸向左以每秒1個單位長度的速度運動,運動時時間t秒.

(1)求點C的坐標(biāo);

(2)當(dāng)∠BCP=15°時,求t的值;

(3)以點P為圓心,PC為半徑的⊙P隨點P的運動而變化,當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動物學(xué)家通過大量的調(diào)查估計出,某種動物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動物活到25歲的概率為多少?現(xiàn)年25歲的這種動物活到30歲的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB經(jīng)過圓心O,交O于點A、C,點DO上一點,連結(jié)ADOD、BD,∠BAD=∠B=30°.

(1)求證:BDO的切線.

(2)若OA=8,求OA、OD與弧AD圍成的扇形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距80km,甲、乙兩人騎車分別從A,B兩地同時相向而行,他們都保持勻速行駛.如圖,l1,l2分別表示甲、乙兩人離B地的距離y(km)與騎車時間x(h)的函數(shù)關(guān)系.根據(jù)圖象得出的下列結(jié)論,正確的個數(shù)是( 。

甲騎車速度為30km/小時,乙的速度為20km/小時;

②l1的函數(shù)表達式為y=80﹣30x;

③l2的函數(shù)表達式為y=20x;

小時后兩人相遇.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣2x﹣3x軸交于A,B兩點(AB的左側(cè)),頂點為C.

(1)A,B兩點的坐標(biāo);

(2)若將該拋物線向上平移t個單位后,它與x軸恰好只有一個交點,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交與A(1,0),B(- 3,0)兩點.

⑴求該拋物線的解析式;

⑵設(shè)⑴中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得QAC的周長最?若存在,求出Q點的坐標(biāo);若不存在,請說明理由.

⑶在拋物線上BC段是否存在點P,使得PBC面積最大,若存在,求P點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案