【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑

(1)判斷BC與⊙O的位置關系,并證明你的結論;
(2)求證:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.

【答案】
(1)解:結論:BC與⊙O相切.

證明:如圖連接OD.

∵OA=OD,

∴∠OAD=∠ODA,

∵AD平分∠CAB,

∴∠CAD=∠DAB,

∴∠CAD=∠ADO,

∴AC∥OD,

∵AC⊥BC,

∴OD⊥BC.

∴BC是⊙O的切線


(2)解:∵BC是⊙O切線,

∴∠ODB=90°,

∴∠BDE+∠ODE=90°,

∵AE是直徑,

∴∠ADE=90°,

∴∠DAE+∠AED=90°,

∵OD=OE,

∴∠ODE=∠OED,

∴∠BDE=∠DAB,

∵∠B=∠B,

∴△ABD∽△DBE


(3)解:在Rt△ODB中,∵cosB= = ,設BD=2 k,OB=3k,

∵OD2+BD2=OB2,

∴4+8k2=9k2,

∴k=2,

∴BO=6,BD=4 ,

∵DO∥AC,

= ,

=

∴CD=


【解析】(1)結論:BC與⊙O相切,連接OD只要證明OD∥AC即可.(2)欲證明△ABD∽△DBE,只要證明∠BDE=∠DAB即可.(3)在Rt△ODB中,由cosB= = ,設BD=2 k,OB=3k,利用勾股定理列出方程求出k,再利用DO∥AC,得 = 列出方程即可解決問題.本題考查圓的綜合題、切線的判定、相似三角形的判定和性質、銳角三角函數(shù)、勾股定理等知識,解題的關鍵是靈活運用這些知識解決問題,學會添加常用輔助線,學會用方程的思想思考問題,屬于中考?碱}型.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義運算:ab=a(1﹣b).若a,b是方程x2﹣x+ m=0(m<0)的兩根,則bb﹣aa的值為(
A.0
B.1
C.2
D.與m有關

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點D關于直線AE的對稱點為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當AB=2,AD=3 時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC,∠B=40°,ADBC邊上的高,且∠DAC=20°,∠BAC=________

【答案】70°

【解析】∵∠B=40°,AD⊥BC,

∴∠BAD=90°-40°=50°.

∵∠DAC=20°,

∴∠BAC=∠BAD+∠DAC=50°+20°=70°.

型】填空
束】
16

【題目】如圖所示,EDAB,AC上的兩點,BD,CE交于點O,且AB=AC,使△ACE≌△ABD,你補充的條件是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圖示的方格紙中,(1)畫出△ABC關于MN對稱的圖形△A1B1C1;

(2)說明△A2B2C2是由△A1B1C1經過怎樣的平移得到的?

(3)在直線MN上找一點P,使得PB+PA最短.(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB的解析式為y=2x+5,與y軸交于點A,與x軸交于點B,點P為線段AB上的一個動點,作PE⊥y軸于點E,PF⊥x軸于點F,連接EF,則線段EF的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關系?試證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對x,y定義一種新運算T,規(guī)定: (其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如: ,已知T(1,﹣1)=﹣2,T(4,2)=1
(1)求a,b的值;
(2)若關于m的不等式組 恰好有4個整數(shù)解,求實數(shù)p的取值范圍.

查看答案和解析>>

同步練習冊答案