【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑
(1)判斷BC與⊙O的位置關系,并證明你的結論;
(2)求證:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.
【答案】
(1)解:結論:BC與⊙O相切.
證明:如圖連接OD.
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAB,
∴∠CAD=∠DAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∵AC⊥BC,
∴OD⊥BC.
∴BC是⊙O的切線
(2)解:∵BC是⊙O切線,
∴∠ODB=90°,
∴∠BDE+∠ODE=90°,
∵AE是直徑,
∴∠ADE=90°,
∴∠DAE+∠AED=90°,
∵OD=OE,
∴∠ODE=∠OED,
∴∠BDE=∠DAB,
∵∠B=∠B,
∴△ABD∽△DBE
(3)解:在Rt△ODB中,∵cosB= = ,設BD=2 k,OB=3k,
∵OD2+BD2=OB2,
∴4+8k2=9k2,
∴k=2,
∴BO=6,BD=4 ,
∵DO∥AC,
∴ = ,
∴ = ,
∴CD= .
【解析】(1)結論:BC與⊙O相切,連接OD只要證明OD∥AC即可.(2)欲證明△ABD∽△DBE,只要證明∠BDE=∠DAB即可.(3)在Rt△ODB中,由cosB= = ,設BD=2 k,OB=3k,利用勾股定理列出方程求出k,再利用DO∥AC,得 = 列出方程即可解決問題.本題考查圓的綜合題、切線的判定、相似三角形的判定和性質、銳角三角函數(shù)、勾股定理等知識,解題的關鍵是靈活運用這些知識解決問題,學會添加常用輔助線,學會用方程的思想思考問題,屬于中考?碱}型.
科目:初中數(shù)學 來源: 題型:
【題目】定義運算:ab=a(1﹣b).若a,b是方程x2﹣x+ m=0(m<0)的兩根,則bb﹣aa的值為( )
A.0
B.1
C.2
D.與m有關
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點D關于直線AE的對稱點為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當AB=2,AD=3 時,求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠B=40°,AD是BC邊上的高,且∠DAC=20°,則∠BAC=________.
【答案】70°
【解析】∵∠B=40°,AD⊥BC,
∴∠BAD=90°-40°=50°.
∵∠DAC=20°,
∴∠BAC=∠BAD+∠DAC=50°+20°=70°.
【題型】填空題
【結束】
16
【題目】如圖所示,E,D是AB,AC上的兩點,BD,CE交于點O,且AB=AC,使△ACE≌△ABD,你補充的條件是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖示的方格紙中,(1)畫出△ABC關于MN對稱的圖形△A1B1C1;
(2)說明△A2B2C2是由△A1B1C1經過怎樣的平移得到的?
(3)在直線MN上找一點P,使得PB+PA最短.(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB的解析式為y=2x+5,與y軸交于點A,與x軸交于點B,點P為線段AB上的一個動點,作PE⊥y軸于點E,PF⊥x軸于點F,連接EF,則線段EF的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關系?試證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對x,y定義一種新運算T,規(guī)定: (其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如: ,已知T(1,﹣1)=﹣2,T(4,2)=1
(1)求a,b的值;
(2)若關于m的不等式組 恰好有4個整數(shù)解,求實數(shù)p的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com