【題目】如圖,菱形的兩個(gè)頂點(diǎn)坐標(biāo)為,,若將菱形繞點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn),則第秒時(shí),菱形兩對(duì)角線交點(diǎn)的坐標(biāo)為__________

【答案】-,0

【解析】

先計(jì)算得到點(diǎn)D的坐標(biāo),根據(jù)旋轉(zhuǎn)的性質(zhì)依次求出點(diǎn)D旋轉(zhuǎn)后的點(diǎn)坐標(biāo),得到變化的規(guī)律即可得到答案

∵菱形的兩個(gè)頂點(diǎn)坐標(biāo)為,,

∴對(duì)角線的交點(diǎn)D的坐標(biāo)是(2,2),

,

將菱形繞點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn),

旋轉(zhuǎn)1次后坐標(biāo)是(0, ),

旋轉(zhuǎn)2次后坐標(biāo)是(-2,2),

旋轉(zhuǎn)3次后坐標(biāo)是(-0),

旋轉(zhuǎn)4次后坐標(biāo)是(-2-2),

旋轉(zhuǎn)5次后坐標(biāo)是(0-),

旋轉(zhuǎn)6次后坐標(biāo)是(2,-2),

旋轉(zhuǎn)7次后坐標(biāo)是(,0),

旋轉(zhuǎn)8次后坐標(biāo)是(2,2

旋轉(zhuǎn)9次后坐標(biāo)是(0,,

由此得到點(diǎn)D旋轉(zhuǎn)后的坐標(biāo)是8次一個(gè)循環(huán),

,

∴第秒時(shí),菱形兩對(duì)角線交點(diǎn)的坐標(biāo)為(-0

故答案為:(-,0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?

(3)過(guò)點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的兩條角平分線BD、CE交于O,且A=60°,則下列結(jié)論中不正確的是( )

A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,ABAC,AB的垂直平分線交線段ACD,若△ABC和△DBC的周長(zhǎng)分別是60 cm38 cm,則△ABC的腰長(zhǎng)和底邊BC的長(zhǎng)分別是( )

A. 22cm16cmB. 16cm22cm

C. 20cm16cmD. 24cm12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們約定:對(duì)角線互相垂直的凸四邊形叫做“正垂形”.

(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有   ;

②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形   “正垂形”.(填“是”或“不是”)

(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時(shí)針?lè)较蚺帕械乃膫(gè)動(dòng)點(diǎn),AC與BD交于點(diǎn)E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當(dāng)≤OE≤時(shí),求AC2+BD2的取值范圍;

(3)如圖2,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(diǎn)(點(diǎn)A在點(diǎn)C的左側(cè)),B是拋物線與y軸的交點(diǎn),點(diǎn)D的坐標(biāo)為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4試直接寫(xiě)出滿足下列三個(gè)條件的拋物線的解析式;

; ②; ③“正垂形”ABCD的周長(zhǎng)為12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCECD均為等邊三角形,B、C、D三點(diǎn)在一直線上,AD、BE相交于點(diǎn)FDF=3,AF=4,則線段FE的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,,,,點(diǎn)從點(diǎn)出發(fā),以每秒單位的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)同時(shí)出發(fā),以每秒單位的速度向點(diǎn)運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.

1)當(dāng)時(shí),若以點(diǎn),和點(diǎn),中的兩個(gè)點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,且線段為平行四邊形的一邊,求的值.

2)若以點(diǎn)和點(diǎn),,,中的兩個(gè)點(diǎn)為頂點(diǎn)的四邊形為菱形,且線段為菱形的一條對(duì)角線,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,以△ABC的一邊BC為直徑的O分別交AB、ACD、E,下面判斷中:當(dāng)△ABC為等邊三角形時(shí),△ODE是等邊三角形;當(dāng)△ODE是等邊三角形,△ABC為等邊三角形;當(dāng)∠A=45°時(shí),△ODE是直角三角形;當(dāng)△ODE是直角三角形時(shí),∠A=45°.正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500.市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4.

(1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷售利潤(rùn)達(dá)到多少元?

(2)若設(shè)每部手機(jī)降低x,每天的銷售利潤(rùn)為y,試寫(xiě)出yx之間的函數(shù)關(guān)系式.

(3)商場(chǎng)要想獲得最大利潤(rùn),每部手機(jī)的售價(jià)應(yīng)訂為為多少元?此時(shí)的最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案