年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在正方形ABCD的外側(cè),作等邊三角形ADE,連接BE,CE.
(1)(4分)求證:BE=CE.
(2)(4分)求∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A,C分別在x軸和y軸的正半軸上,頂點B的坐標(biāo)為(2m,m),翻折矩形OABC,使點A與點C重合,得到折痕DE.設(shè)點B的對應(yīng)點為F,折痕DE所在直線與y軸相交于點G,經(jīng)過點C、F、D的拋物線為。
(1)求點D的坐標(biāo)(用含m的式子表示)
(2)若點G的坐標(biāo)為(0,-3),求該拋物線的解析式。
(3)在(2)的條件下,設(shè)線段CD的中點為M,在線段CD上方的拋物線上是否存在點P,使PM=EA?若存在,直接寫出P的坐標(biāo),若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.(1)求∠DOA的度數(shù); (2)求證:直線ED與⊙O相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com