【題目】如圖,在平面直角坐標系中,拋物線交軸的負半軸于點.點是軸正半軸上一點,點關于點的對稱點恰好落在拋物線上.過點作軸的平行線交拋物線于另一點.若點的橫坐標為1,則的長為________.
【答案】3
【解析】
解方程x2+mx=0得A(﹣m,0),再利用對稱的性質得到點A的坐標為(﹣1,0),所以拋物線解析式為y=x2+x,再計算自變量為1的函數(shù)值得到A′(1,2),接著利用C點的縱坐標為2求出C點的橫坐標,然后計算A′C的長.
解:當y=0時,x2+mx=0,解得x1=0,x2=﹣m,則A(﹣m,0),
∵點A關于點B的對稱點為A′,點A′的橫坐標為1,
∴點A的坐標為(﹣1,0),
∴拋物線解析式為y=x2+x,
當x=1時,y=x2+x=2,則A′(1,2),
當y=2時,x2+x=2,解得x1=﹣2,x2=1,則C(﹣2,1),
∴A′C的長為1﹣(﹣2)=3.
故答案為:3.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0),對稱軸為x=1,與y軸的交點B在(0,2)和(0,3)之間(包含這兩個點)運動.有如下四個結論:①拋物線與x軸的另一個交點是(3,0);②點C(x1,y1),D(x2,y2)在拋物線上,且滿足x1<x2<1,則y1>y2;③常數(shù)項c的取值范圍是2≤c≤3;④系數(shù)a的取值范圍是﹣1≤a≤﹣.上述結論中,所有正確結論的序號是( 。
A. ①②③ B. ②③④ C. ①④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小松設計的“做圓的內(nèi)接等腰直角三角形”的尺規(guī)作圖過程.
已知:⊙O.
求作:⊙O的內(nèi)接等腰直角三角形.
作法:如圖,
①作直徑AB;
②分別以點A,B為圓心,以大于的同樣長為半徑作弧,兩弧交于M,N兩點;
③作直線MN交⊙O于點C,D;
④連接AC,BC.
所以△ABC就是所求作的三角形.
根據(jù)小松設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵AB是直徑, C是⊙O上一點
∴ ∠ACB= ( ) (填寫推理依據(jù))
∵AC=BC( )(填寫推理依據(jù))
∴△ABC是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線∥ ,⊙O與和分別相切于點A和點B.點M和點N分別是和上的動點,MN沿和平移.⊙O的半徑為1,∠1=60°.下列結論錯誤的是( 。
A. B. l1和l2的距離為2
C. 若∠MON=90°,則MN與⊙O相切 D. 若MN與⊙O相切,則
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O上依次有A、B、C三點,BO的延長線交⊙O于E,,過點C作CD∥AB交BE的延長線于D,AD交⊙O于點F.
(1)求證:四邊形ABCD是菱形;
(2)連接OA、OF,若∠AOF=3∠FOE且AF=3,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側.
則其中正確結論的個數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若干個相同的正方體組成一個幾何體,從不同方向看可以得到如圖所示的形狀,則這個幾何體最多可由多少個這樣的正方體組成?( 。
A. 12個 B. 13個 C. 14個 D. 18個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點B按逆時針方向旋轉45°后得到△A′BC′,則陰影部分的面積為 ___________cm2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆時針旋轉一定角度后與△ADE重合,且點C恰好成為AD中點,如圖
(1)指出旋轉中心,并求出旋轉角的度數(shù).
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com