【題目】在△ABC中,AO=BO,直線MN經過點O, 且AC⊥MN于C,BD⊥MN于D
(1) 當直線MN繞點O旋轉到圖①的位置時,求證:CD=AC+BD;
(2) 當直線MN繞點O旋轉到圖②的位置時,求證:CD=AC-BD;
(3) 當直線MN繞點O旋轉到圖③的位置時,試問:CD、AC、BD有怎樣的等量關系?請寫出這個等量關系,并加以證明。
【答案】(1)證明見解析;(2)證明見解析;(3)CD=BD-AC,證明見解析.
【解析】試題分析:(1)通過證明△ACO≌△ODB得到OC=BD,AC=OD,則CD=AC+BD;
(2)通過證明△ACO≌△ODB得到OC=BD,AC=OD,則CD=AC-BD;
(3)通過證明△ACO≌△ODB得到OC=BD,AC=OD,則CD=BD-AC.
試題解析:(1)如圖1,
∵△AOB中,∠AOB=90°,
∴∠AOC+∠BOD=90°,
直線MN經過點O,且AC⊥MN于C,BD⊥MN于D,
∴∠ACO=∠BDO=90°
∴∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
在△ACO和△ODB中,
∴△ACO≌△ODB(AAS),
∴OC=BD,AC=OD,
∴CD=AC+BD;
(2)如圖2,
∵△AOB中,∠AOB=90°,
∴∠AOC+∠BOD=90°,
直線MN經過點O,且AC⊥MN于C,BD⊥MN于D,
∴∠ACO=∠BDO=90°
∴∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
在△ACO和△ODB中,
,
∴△ACO≌△ODB(AAS),
∴OC=BD,AC=OD,
∴CD=OD﹣OC=AC﹣BD,即CD=AC﹣BD.
(3)如圖3,
∵△AOB中,∠AOB=90°,
∴∠AOC+∠BOD=90°,
直線MN經過點O,且AC⊥MN于C,BD⊥MN于D,
∴∠ACO=∠BDO=90°
∴∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
在△ACO和△ODB中,
,
∴△ACO≌△ODB(AAS),
∴OC=BD,AC=OD,
∴CD=OC﹣OD=BD﹣AC,
即CD=BD﹣AC.
科目:初中數學 來源: 題型:
【題目】如圖,長方形ABCD的面積為300cm2,長和寬的比為3:2.在此長方形內沿著邊的方向能否并排裁出兩個面積均為147cm2的圓(π取3),請通過計算說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.用長為32米的籬笆圍一個矩形養(yǎng)雞場.設圍成的矩形一邊長為x米.
(1)當x為何值時,圍成的養(yǎng)雞場面積為60平方米;
(2)請問能否圍成面積為70平方米的養(yǎng)雞場?如果能,請求出其邊長;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數與反比例函數的圖象相交于A(-4,-2),B(a,4)兩點.
(1)求反比例函數的表達式和點B的坐標;
(2)根據圖象直接同答:當白變量x在什么范圍時,一次函數的值大于反比例函數的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于零的說法,下列正確的選項是( )
A. 零是最小的整數 B. 零的相反數是零
C. 零與任何數相加得零 D. 兩數相乘得零,則這兩個數都為零
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了開闊學生的視野,積極組織學生參加課外讀書活動.在這次活動中.“放飛夢想”讀書小組協助老師隨機抽取本校的部分學生,調查他們最喜愛的圖書類別(圖書分為文學類、藝體類、科普類、其他類共四類),并將調查結果繪制成如下兩幅不完整的統計圖.請你結合圖中的信息解答下列問題:
(1)求被調查的學生人數;
(2)請補全條形統計圖;
(3)若該校有1200名學生,試估計全校最喜愛文學類圖書的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中放置了5個正方形,點B1(0,2)在y軸上,點C1,E1,E2,C2,E3,E4,C3在x軸上,C1的坐標是(1, 0),B1C1∥B2C2∥B3C3.點A3到x軸的距離是.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在△ABC中,AB=AC=8,∠BAC=30°.將△ABC繞點A旋轉,使點B落在原△ABC的點C處,此時點C落在點D處.延長線段AD,交原△ABC的邊BC的延長線于點E,那么線段DE的長等于___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com