【題目】在平面直角坐標(biāo)系中,過格點(diǎn)A、B、C作一圓。
(1)弧AC的長為_____(結(jié)果保留π);
(2)點(diǎn)B與圖中格點(diǎn)的連線中,能夠與該圓弧相切的連線所對應(yīng)的格點(diǎn)的坐標(biāo)為_____.
【答案】(1)(2)(5,1)或(1,3)或(7,0)
【解析】
(1)根據(jù)垂徑定理的推論:弦的垂直平分線必過圓心,可以作弦AB和BC的垂直平分線,交點(diǎn)即為圓心,然后根據(jù)弧長的公式即刻得到結(jié)論;
(2)由弦AB與弦BC的垂直平分線的交點(diǎn)為圓心,找出圓心O′的位置,確定出圓心坐標(biāo),過點(diǎn)B與圓相切時,根據(jù)切線的判定方法得到∠O′BF為直角時,BF與圓相切,根據(jù)網(wǎng)格找出滿足條件的F坐標(biāo)即可.
(1)根據(jù)過格點(diǎn)A,B,C作一圓弧,
由圖形可得:三點(diǎn)組成的圓的圓心為:O′(2,0),
∴半徑
連接
則
∴弧AC的長
故答案為:
(2)∵由圖形可得:三點(diǎn)組成的圓的圓心為:O′(2,0),
∴只有時,BF與圓相切,
此時△BO′D≌△FBE,EF=BD=2,
∴F點(diǎn)的坐標(biāo)為:(5,1)或(1,3)或(7,0),
則點(diǎn)B與下列格點(diǎn)的連線中,能夠與該圓弧相切的是(5,1)或(1,3)或(7,0),共3個.
故答案為:(5,1)或(1,3)或(7,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N再分別以MN為圓心,大于的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法中正確的有________.
①AD是的平分線;②;③點(diǎn)D在AB的中垂線上;④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知四邊形ABCD的四條邊相等,四個內(nèi)角都等于90°,點(diǎn)E是CD邊上一點(diǎn),F(xiàn)是BC邊上一點(diǎn),且∠EAF=45°.
(1)求證:BF+DE=EF;
(2)若AB=6,設(shè)BF=x,DE=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(3)過點(diǎn)A作AH⊥FE于點(diǎn)H,如圖(2),當(dāng)FH=2,EH=1時,求△AFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AD,BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā)沿圖中某一個扇形順時針勻速運(yùn)動,設(shè)∠APB=y(單位:度),如果y與點(diǎn)P運(yùn)動的時間x(單位:秒)的函數(shù)關(guān)系的圖象大致如圖2所示,那么點(diǎn)P的運(yùn)動路線可能為( )
A. O→B→A→O B. O→A→C→O C. O→C→D→O D. O→B→D→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a≠0)圖象如圖所示,下列結(jié)論:①abc>0;②2a+b=0;③當(dāng)m≠1時,a+b>;④a-b+c>0;⑤若, 且, 則.其中正確的有( ).
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,∠BAC=75°,AD,CF分別是BC、AB邊上的高且相交于點(diǎn)P,∠ABC的平分線BE分別交AD、CF于M、N.以下四個結(jié)論:①△PMN等邊三角形;②除了△PMN外,還有4個等腰三角形;③△ABD≌△CPD;④當(dāng)DM=2時,則DC=6.其中正確的結(jié)論是:_____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF.
(1)求證:BE=BF;
(2)若∠ABE=20°,求∠BFE的度數(shù);
(3)若AB=6,AD=8,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著城際鐵路的正式開通,從甲市經(jīng)丙市到乙市的高鐵里程比普快里程縮短了90km,運(yùn)行時間減少了8h,已知甲市到乙市的普快列車?yán)锍虨?/span>1220km.高鐵平均時速是普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)某日王先生要從甲市去距離大約780km的丙市參加14:00召開的會議,如果他買到當(dāng)日9:20從甲市到丙市的高鐵票,而且從丙市火車站到會議地點(diǎn)最多需要1小時.試問在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下,它能否在開會之前20分鐘趕到會議地點(diǎn)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com