給出定義,若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
①求證:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
考點(diǎn):四邊形綜合題
專題:幾何綜合題
分析:(1)根據(jù)定義和特殊四邊形的性質(zhì),則有矩形或正方形或直角梯形;
(2)①首先證明△ABC≌△DBE,得出AC=DE,BC=BE,連接CE,進(jìn)一步得出△BCE為等邊三角形;
②利用等邊三角形的性質(zhì),進(jìn)一步得出△DCE是直角三角形,問題得解.
解答:解:(1)正方形、矩形、直角梯形均可;

證明:(2)①∵△ABC≌△DBE,
∴BC=BE,
∵∠CBE=60°,
∴△BCE是等邊三角形;

②∵△ABC≌△DBE,
∴BE=BC,AC=ED;
∴△BCE為等邊三角形,
∴BC=CE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=90°,
在Rt△DCE中,
DC2+CE2=DE2,
∴DC2+BC2=AC2
點(diǎn)評(píng):此題主要考查勾股定理,三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),是一道綜合性很強(qiáng)的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

“黃金1號(hào)”玉米種子的價(jià)格為5元/kg,如果一次購買2kg以上的種子,超過2kg部分的種子的價(jià)格打8折.
(Ⅰ)根據(jù)題意,填寫下表:
購買種子的數(shù)量/kg1.523.54
付款金額/元7.5
 
16
 
(Ⅱ)設(shè)購買種子數(shù)量為xkg,付款金額為y元,求y關(guān)于x的函數(shù)解析式;
(Ⅲ)若小張一次購買該種子花費(fèi)了30元,求他購買種子的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:(
x+1
x2-1
-
1
1-x
÷
x+2
x2-x
,其中x=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過C作CD⊥AD于D,交AB的延長線于E.
(1)求證:CD為⊙O的切線.
(2)若
CD
AD
=
3
4
,求cos∠DAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,點(diǎn)D,E分別在邊AC,AB上,BD與CE交于點(diǎn)O,給出下列三個(gè)條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個(gè)條件中,由哪兩個(gè)條件可以判定△ABC是等腰三角形?(用序號(hào)寫出所有成立的情形)
(2)請選擇(1)中的一種情形,寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:|
3
-5|+2cos30°+(
1
3
-1+(9-
3
0+
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,梯形ABCD中,AD∥BC,AB=DC,對(duì)角線AC、BD相交于點(diǎn)F,點(diǎn)E是邊BC延長線上一點(diǎn),且∠CDE=∠ABD.
(1)求證:四邊形ACED是平行四邊形;
(2)連接AE,交BD于點(diǎn)G,求證:
DG
GB
=
DF
DB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)相關(guān)部門統(tǒng)計(jì),2014年我國共有9390000名學(xué)生參加高考,9390000用科學(xué)記數(shù)法表示為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

不等式組
1
2
x≤1
2-x<3
的解集是
 

查看答案和解析>>

同步練習(xí)冊答案