【題目】某活動(dòng)小組為了估計(jì)裝有個(gè)白球和若干個(gè)紅球(每個(gè)球除顏色外都相同)的袋中紅球接近多少個(gè),在不將袋中球倒出來的情況下,分小組進(jìn)行摸球試驗(yàn),兩人一組,共組進(jìn)行摸球?qū)嶒?yàn).其中一位學(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做次試驗(yàn),匯總起來后,摸到紅球次數(shù)為次.

估計(jì)從袋中任意摸出一個(gè)球,恰好是紅球的概率是多少?

請(qǐng)你估計(jì)袋中紅球接近多少個(gè)?

【答案】 ; 個(gè)

【解析】

求出總次數(shù),根據(jù)紅球出現(xiàn)的頻數(shù),求出紅球出現(xiàn)的頻率,即可用來估計(jì)紅球出現(xiàn)的概率.

,

∴摸到紅球的概率為:,

因?yàn)樵囼?yàn)次數(shù)很大,大量試驗(yàn)時(shí),頻率接近于理論概率,

所以估計(jì)從袋中任意摸出一個(gè)球,恰好是紅球的概率是;

設(shè)袋中紅球有個(gè),根據(jù)題意得:

,

解得

經(jīng)檢驗(yàn)是原方程的解.

∴估計(jì)袋中紅球接近個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)函數(shù)的解析式等于另兩個(gè)函數(shù)解析式的和,則這個(gè)函數(shù)稱為另兩個(gè)函數(shù)的“生成函數(shù)”。現(xiàn)有關(guān)于x的兩個(gè)二次函數(shù)y1、y2,且y1=a(x-m)2+4(m>0),y1、y2的“生成函數(shù)”為:y=x2+4x+14;當(dāng)x=m時(shí),y2=15;二次函數(shù)y2的圖象的頂點(diǎn)坐標(biāo)為(2,k)。

(1)求m的值;

(2)求二次函數(shù)y1、y2的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OP平分∠AOB,PAOA、PBOB,垂足分別為A、B,下列結(jié)論成立的是( )

PA=PB;②PO平分∠APB;③OA=OB;④AB垂直平分OP

A.①③B.①②③C.②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】北京時(shí)間2015731日,國(guó)際奧委會(huì)主席巴赫宣布:中國(guó)北京獲得2022年第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)舉辦權(quán).北京也創(chuàng)造歷史,成為第一個(gè)既舉辦過夏奧會(huì)又舉辦冬奧會(huì)的城市,張家口也成為本屆冬奧會(huì)的協(xié)辦城市.近期,新建北京至張家口鐵路可行性研究報(bào)告已經(jīng)獲得國(guó)家發(fā)改委批復(fù),同意新建北京至張家口鐵路,鐵路全長(zhǎng)約180千米.按照設(shè)計(jì),京張高鐵列車的平均行駛速度是普通快車的1.5倍,用時(shí)比普通快車用時(shí)少了20分鐘,求高鐵列車的平均行駛速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),坐標(biāo)分別為,且,圖象上有一點(diǎn)軸下方,在下列四個(gè)算式中判定正確的是________

;②;③;④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為ABC三邊的長(zhǎng).

(1)如果x=-1是方程的根,試判斷ABC的形狀,并說明理由;

(2)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】年是我國(guó)實(shí)現(xiàn)第一個(gè)百年目標(biāo),全國(guó)建成小康社會(huì)的收官之年,早在十六大我黨就提出加快推進(jìn)社會(huì)主義現(xiàn)代化,力爭(zhēng)國(guó)民生產(chǎn)總值到年比年翻兩番,要實(shí)現(xiàn)這一目標(biāo),以十年為單位計(jì)算,求每十年的國(guó)民生產(chǎn)總值的增長(zhǎng)率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形為正方形,點(diǎn)為線段上一點(diǎn),連接,過點(diǎn),交射線于點(diǎn),以、為鄰邊作矩形,連接

如圖,求證:矩形是正方形;

,,求的長(zhǎng)度;

當(dāng)線段與正方形的某條邊的夾角是時(shí),直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F

1)求證:AE=EF;

2)如圖2,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上的任意一點(diǎn),其余條件不變,(1)中的結(jié)論是否仍然成立?  ;(填成立不成立);

3)如圖3,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn),其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)證明,若不成立說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案