【題目】某商店購進一批進價為20/件的日用商品,第一個月,按進價提高50%的價格出售,售出400件,第二個月,商店準備在不低于原售價的基礎(chǔ)上進行加價銷售,根據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少.銷售量y()與銷售單價x()的關(guān)系如圖所示.

(1)圖中點P所表示的實際意義是 ;銷售單價每提高1元時,銷售量相應(yīng)減少 件;

(2)請直接寫出yx之間的函數(shù)表達式: ;自變量x的取值范圍為

(3)第二個月的銷售單價定為多少元時,可獲得最大利潤?最大利潤是多少?

【答案】(1)當售價定為35元/件時銷售量為300件; 20 (2)y=kx+b, 30≤x≤50.(3)第二個月的銷售單價定為35元時,可獲得最大利潤,最大利潤是4 500元.

【解析】

(1)根據(jù)坐標系中點的坐標的意義,即可寫出點P的實際意義,再根據(jù)銷售單價每提升一元的銷售減少量=銷售減少數(shù)量÷增加價錢即可列式算出結(jié)論;

(2)設(shè)yx之間的函數(shù)表達式為y=kx+b,根據(jù)圖象上點的坐標利用待定系數(shù)法即可求出該函數(shù)表達式,令y=0求出x值,即可得出自變量x的取值范圍;

(3)設(shè)第二個月的利潤為w元,根據(jù)利潤=單個利潤×銷售數(shù)量即可得出w關(guān)于x的函數(shù)關(guān)系式,利用配方法結(jié)合二次函數(shù)的性質(zhì)即可解決最值問題.

(1)圖中點P所表示的實際意義是:當售價定為35/件時,銷售數(shù)量為300件;

第一個月的該商品的售價為:20×(1+50%)=30(元),

銷售單價每提高1元時,銷售量相應(yīng)減少數(shù)量為:(400-300)÷(35-30)=20(件).

故答案為:當售價定為35/件時,銷售數(shù)量為300件;20.

(2)設(shè)yx之間的函數(shù)表達式為y=kx+b,

將點(30,400)、(35,300)代入y=kx+b中,

得:

解得,

yx之間的函數(shù)表達式為y=-20x+1000.

y=0時,x=50,

∴自變量x的取值范圍為30≤x≤50.

故答案為:y=-20x+1000;30≤x≤50.

(3)設(shè)第二個月的利潤為w元,

由已知得:w=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000=-20(x-35)2+4500,

-20<0,

∴當x=35時,w取最大值,最大值為4500.

故第二個月的銷售單價定為35元時,可獲得最大利潤,最大利潤是4500元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】菱形的周長為32cm,一個內(nèi)角的度數(shù)是60°,則兩條對角線的長分別是(

A. 8cm4cm B. 4cm8cm C. 8cm8cm D. 4cm4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+5x+n經(jīng)過點A(10),與y軸交于點B

(1)求拋物線的解析式;

(2)Py軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊直角板中的兩個直角頂點重合在一起,即按如圖所示的方式疊放在一起,其中∠A60°,∠B30,∠D45°.

1)若∠BCD45°,求∠ACE的度數(shù).

2)若∠ACE150°,求∠BCD的度數(shù).

3)由(1)、(2)猜想∠ACE與∠BCD存在什么樣的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)所示,A,E,F,C在一條直線上,AE=CF,過E,F分別作DE⊥AC,BF⊥AC,若AB=CD

1)求證:EG=FG

2)若將△DEC的邊EC沿AC方向移動,變?yōu)閳D(2)時,其余條件不變,上述結(jié)論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、BC,請在網(wǎng)格中進行下列操作:

1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為   ;

2)連接ADCD,求⊙D的半徑及扇形DAC的圓心角度數(shù);

3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(﹣21),B(﹣3,﹣2),C1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1

1)在圖中畫出△A1B1C1

2)點A1,B1C1的坐標分別為   、   、   

3)若直線BC上有一點P,使△PAC的面積是△ABC面積的2倍,直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一段6000米的道路由甲、乙兩個工程隊負責完成,已知甲工程隊每天完成的工作量是乙工程隊每天完成工作量的2倍,且甲工程隊單獨完成此項工程比乙工程隊單獨完成此項工程少用10天.

1)求甲、乙兩工程隊每天各完成多少米?

2)如果甲工程隊每天需工程費700元,乙工程隊每天需工程費500元,甲工程隊單獨施工4天后由甲乙兩個工程隊共同完成余下的工程,則完成此項工程共需要多少費用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D 的中點.

(1)求證:AB=BC;

(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

同步練習冊答案