【題目】多項(xiàng)式3a2-ab3+18的次數(shù)是____________

【答案】4

【解析】

根據(jù)多項(xiàng)式次數(shù)的定義求解.多項(xiàng)式的次數(shù)是多項(xiàng)式中最高次項(xiàng)的次數(shù).

依題意知,此題的最高次項(xiàng)是-ab3

則多項(xiàng)式的次數(shù)是4.

故答案為:4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),C→B→A的路徑,以2cm每秒的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.

(1) 當(dāng)t=1時(shí),求△ACP的面積

(2) t為何值時(shí),線段AP是∠CAB的平分線?

(3) 請(qǐng)利用備用圖2繼續(xù)探索:當(dāng)t為何值時(shí),△ACP是以AC為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】測(cè)量計(jì)算是日常生活中常見(jiàn)的問(wèn)題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀測(cè)旗桿頂點(diǎn)A的仰角為50°,觀測(cè)旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進(jìn)度,想在小山的另一側(cè)同時(shí)施工.為了使山的另一側(cè)的開(kāi)挖點(diǎn)CAB的延長(zhǎng)線上,設(shè)想過(guò)C點(diǎn)作直線AB的垂線L,過(guò)點(diǎn)B作一直線(在山的旁邊經(jīng)過(guò)),與L相交于D點(diǎn),經(jīng)測(cè)量∠ABD=135°,BD=800米,求直線L上距離D點(diǎn)多遠(yuǎn)的C處開(kāi)挖?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點(diǎn),連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3S△EDF,求AE的長(zhǎng);

(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.

①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;

②求EF的長(zhǎng);

(3)如圖③,若FE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)N,CN=1,CE=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,P為邊AB上一點(diǎn)

(1) 如圖1,若ACP=B,求證:AC2=AP·AB;

(2) 若M為CP的中點(diǎn),AC=2,

如圖2,若PBM=ACP,AB=3,求BP的長(zhǎng);

如圖3,若ABC=45°,A=BMP=60°,直接寫(xiě)出BP的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動(dòng)課時(shí)間測(cè)量位于烈山山頂?shù)难椎鄣裣窀叨龋阎疑狡旅媾c水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進(jìn)1620尺到達(dá)E點(diǎn),在點(diǎn)E處測(cè)得雕像頂端A的仰角為60°,求雕像AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)我們把叫做兩點(diǎn)間的直角距離.

(1)已知點(diǎn)A(1,1),點(diǎn)B(3,4),則d(A,B)=________.

(2)已知點(diǎn)E(a,a),點(diǎn)F(2,2),且d(E,F(xiàn))=4,則a=________.

(3)已知點(diǎn)M(m,2)點(diǎn)N(1,0),則d(M,N)的最小值為_(kāi)_______.

(4)設(shè)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動(dòng)點(diǎn),我們把d(,Q)的最小值叫做到直線y=ax+b的直角距離,試求點(diǎn)M(5,1)到直線y=x+2的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;CF=2AF;DF=DC;tanCAD=.其中正確的結(jié)論有( )

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案