【題目】如圖,半圓O的直徑AC=2,點(diǎn)B為半圓的中點(diǎn),點(diǎn)D在弦AB上,連結(jié)CD,作BF⊥CD于點(diǎn)E,交AC于點(diǎn)F,連結(jié)DF,當(dāng)△BCE和△DEF相似時,BD的長為_____.
【答案】
【解析】
分兩種情形討論:①當(dāng)∠DFE=∠BCE時,可以證明DB=DC,BC=CF,∠DFC=∠DBC=90°即可解決問題.②當(dāng)∠FDE=∠BCE時,可以證明DF∥BC、△BDF∽△CBD得到 = 列出方程解決問題.
解:
①如圖1,當(dāng)∠DFE=∠BCE時,
∵∠DEF=∠BEC,
∴△DEF∽△BEC,
∵AC是直徑,
∴∠ABC=90°,
∵BF⊥CD,
∴∠CEB=90°,
∴∠BCE+∠CBE=90°,∠DBE+∠EBC=90°,
∴∠DBE=∠BCE=∠DFE,
∴DB=DF,
∵DE⊥BF,
∴EB=EF,
∴BC=CF,
∵點(diǎn)B為半圓的中點(diǎn),
∴AB=BC,
∴∠A=45°,
∵∠DBF=∠DFB,∠CBF=∠CFB,∠DBF+∠CBF=90°,
∴∠DFB+∠CFB=90°,
∴∠DFC=∠DFA=90°,
∴∠A=∠ADF=45°,
∴AF=DF=BD,
在RT△ABC中,∵AC=2 ,
∴AB=BC=AC=2,
∴FC=2,
∴BD=AF=AC-FC=2-2,
②如圖2,
當(dāng)∠FDE=∠BCE時,
∵∠DEF=∠BEC,
∴△DEF∽△CEB,DF∥BC,
∴∠ADF=∠ABC=90°,
∵∠ABC=∠BEC=90°,
∴∠BCE+∠CBE=90°,∠DBE+∠EBC=90°,
∴∠DBE=∠BCE=∠FDE,
∵∠BDF=∠DBC=90°,∠DBF=∠BCD,
∴△BDF∽△CBD,
∴ =,
∵∠A=45°,∠ADF=90°,
∴∠AFD=∠A=45°,
∴AD=DF,
設(shè)BD=x,由(1)可知:AB=BC=2,AD=DF=2-x,
∴ = ,整理得:x2+2x-4=0,
解得:x= -1+ (或-1-舍棄)
∴BD=-1.
故答案為2-2或-1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計), A為入口, F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF ;彎道為以點(diǎn)O為圓心的一段弧,且弧BC,弧ED,弧CD所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯,均?/span>10m/s的速度行駛,從不同出口駛出. 其間兩車到點(diǎn)O的距離y(m)與時間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是( )
A. 甲車在立交橋上共行駛8s B. 從F口出比從G口出多行駛40m
C. 甲車從F口出,乙車從G口出 D. 立交橋總長為150m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,FG、AC是直徑,AB是弦,FG⊥AB,垂足為點(diǎn)P,過點(diǎn)C的直線交AB的延長線于點(diǎn)D,交GF的延長線于點(diǎn)E,已知AB=4,⊙O的半徑為 .
(1)求線段AP的長;
(2)若DE是⊙O的切線,求線段OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB⊥CD,C是AB上一動點(diǎn),AB=CD
(1)在圖1中,將BD繞點(diǎn)B逆時針方向旋轉(zhuǎn)90°到BE,若連接DE,則△DBE為等腰直角三角形;若連接AE,試判斷AE與BC的數(shù)量和位置關(guān)系并證明;
(2)如圖2,F是CD延長線上一點(diǎn),且DF=BC,直線AF,BD相交于點(diǎn)G,∠AGB的度數(shù)是一個固定值嗎?若是,請求出它的度數(shù);若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A為函數(shù) 圖象上一點(diǎn),連結(jié)OA,交函數(shù) 的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場開展購物抽獎活動,抽獎箱中有3個形狀、大小和質(zhì)地等完全相同的小球,分別標(biāo)有數(shù)字1、2、3.顧客從中隨機(jī)摸出一個小球,然后放回箱中,再隨機(jī)摸出一個小球.
(1)利用樹形圖法或列表法(只選其中一種),表示摸出小球可能出現(xiàn)的所有結(jié)果;
(2)若規(guī)定:兩次摸出的小球的數(shù)字之積為9,則為一等獎;數(shù)字之積為6,則為二等獎;數(shù)字之積為2或4,則為三等獎.請你分別求出顧客抽中一等獎、二等獎、三等獎的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以AB為直徑的圓中,∠ACB=∠ABD=90°,∠D=60°,∠ABC=45°.
(1)求證:EC平分∠AEB;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形是學(xué)校的一塊種植基地示意圖,這塊基地可以分成正方形和,已知這個五邊形的周長為88米,正方形的面積為400平方米.
(1)求正方形的周長;
(2)求點(diǎn)到邊的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝重慶南開中學(xué)建校83周年暨校運(yùn)動會,我校初二(21)班準(zhǔn)備統(tǒng)一穿初一時期訂制的服裝參加運(yùn)動會,分別需要增訂“英倫學(xué)院風(fēng)”班服(250元/件)、“”運(yùn)動褲(90元/件)、“少年的我”短袖恤(40元/件)共50件(三種服裝均有增訂),總花費(fèi)6000元,且需要增訂“少年的我”短袖恤的件數(shù)最多,則需要增訂“”運(yùn)動褲__________件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com