【題目】為豐富學生課余生活,我校準備開設(shè)興趣課堂.為了了解學生對繪畫、書法、舞蹈、樂器這四個興趣小組的喜愛情況,在全校進行隨機抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖(信息尚不完整),請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了多少名同學?
(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中樂器部分的圓心角的度數(shù);
(3)如果我校共有1000名學生參加這4個課外興趣小組,而每個教師最多只能輔導本組的25名學生,估計書法興趣小組至少需要準備多少名教師?
【答案】(1)200;(2)圖詳見解析,108°;(3)4.
【解析】
(1)根據(jù)參加繪畫小組的人數(shù)是90,所占的百分比是45%,即可求得調(diào)查的總?cè)藬?shù);
(2)利用360°乘以對應(yīng)的比例即可求得圓心角的度數(shù);
(3)利用樣本估計總體的方法求出各書法興趣小組的人數(shù),再除以25即可解答.
(1)共有學生:90÷45%=200(人),
答:此次共調(diào)查了200名同學;
(2)喜愛樂器小組的人數(shù)是200-90-20-30=60(人);
扇形統(tǒng)計圖中樂器部分的圓心角的度數(shù)是360°×=108°.
(3)學習書法有×1000=100(人),
需要書法教師:100÷25=4(人),
答:估計書法興趣小組至少需要準備4名教師.
科目:初中數(shù)學 來源: 題型:
【題目】“龜兔賽跑”的故事同學們都非常熟悉,圖中的線段和折線表示“龜兔賽跑”時路程與時間的關(guān)系.請你根據(jù)圖中給出的信息,解決下列問題.
(1)填空:折線表示賽跑過程中__________的路程與時間的關(guān)系,線段表示賽跑過程中__________的路程與時間的關(guān)系;
(2)兔子在起初每分鐘跑多少千米?烏龜每分鐘爬多少米?
(3)兔子醒來后,以48千米/時的速度跑向終點,結(jié)果還是比烏龜晚到了0.5分鐘,請你算算兔子在途中一共睡了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:若∠AOD=∠BOC=60°,A、O、C三點在同一條線上,△AOB與△COD是能夠重合的圖形.求:
(1)旋轉(zhuǎn)中心;
(2)旋轉(zhuǎn)角度數(shù);
(3)圖中經(jīng)過旋轉(zhuǎn)后能重合的三角形共有幾對?若A、O、C三點不共線,結(jié)論還成立嗎?為什么?
(4)求當△BOC為等腰直角三角形時的旋轉(zhuǎn)角度;
(5)若∠A=15°,則求當A、C、B在同一條線上時的旋轉(zhuǎn)角度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山,就是金山銀山”.某旅游景區(qū)為了保護環(huán)境,需購買兩種型號的垃圾處理設(shè)備共10臺,已知每臺型設(shè)備日處理能力為12噸;每臺型設(shè)備日處理能力為15噸,購回的設(shè)備日處理能力不低于140噸.
(1)請你為該景區(qū)設(shè)計購買兩種設(shè)備的方案;
(2)已知每臺型設(shè)備價格為3萬元,每臺型設(shè)備價格為4.4萬元.廠家為了促銷產(chǎn)品,規(guī)定貨款不低于40萬元時,則按9折優(yōu)惠;問:采用(1)設(shè)計的哪種方案,使購買費用最少,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥BC,AE平分∠BAD交BC于點E,AE⊥DE,∠1+∠2=90°,M、N分別是BA、CD延長線上的點,∠EAM和∠EDN的平分線交于點F,∠F的度數(shù)為( )
A.120°B.135°C.150°D.不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, ⊙O 的半徑是2,直線l與⊙O 相交于A、B 兩點,M、N 是⊙O 上的兩個動點,且在直線l的異側(cè),若∠AMB=45°,則四邊形MANB 面積的最大值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹,成活98%.現(xiàn)已掛果,經(jīng)濟效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹上的楊梅,每棵的產(chǎn)量如折線統(tǒng)計圖所示.
(1)分別計算甲、乙兩山樣本的平均數(shù),并估算出甲、乙兩山楊梅的產(chǎn)量總和;
(2)試通過計算說明,哪個山上的楊梅產(chǎn)量較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園平行于墻的一邊長為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達到200m2嗎?若能,求出此時x的值,若不能,說明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當x取何值時,花園的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下列推理說明:
如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°( ),
∴AB∥CD ( )
∴∠B= ( )
又∵∠B=∠D( 已知。
∴ ∠ = ∠ ( 等量代換。
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com