【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為/個的粽子,根據(jù)市場預測,該品牌粽子每個售價元時,每天能出售個,并且售價每上漲元,其銷售量將減少個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子的售價不能超過進價的

1)請你利用所學知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為元.

2)定價為多少時每天的利潤最大?最大利潤是多少?

【答案】1)定價為元時,每天的利潤為元;(2)當定價為元時,每天的利潤最大,最大的利潤是元.

【解析】

1)設每個粽子的定價為元時,每天的利潤為元,根據(jù)“總利潤=單個利潤×數(shù)量”列出方程即可求出結論;

2)設每個粽子的定價為元,根據(jù)“總利潤=單個利潤×數(shù)量”即可表示出總利潤,然后利用配方法和平方的非負性即可求出結論.

解:設每個粽子的定價為元時,每天的利潤為元,

根據(jù)題意得:,

解得

因售價不能超過進價的,

,即

,即定價為元時,每天的利潤為元.

設每個粽子的定價為元,則每天的利潤為:

當定價為元時,每天的利潤最大,最大的利潤是元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,老師提出一個問題:如圖①,在平面直角坐標系中,點的坐標為,點軸正半軸上一動點,以為邊作等腰直角三角形,使,點在第一象限,設點的橫坐標為,設……,之間的函數(shù)圖象如圖②所示.題中用“……”表示的缺失的條件應補為(

A.的橫坐標B.的縱坐標C.的周長D.的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優(yōu)惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發(fā)現(xiàn),該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=-2x+80.設這種產品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關系式;
(2)該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知經過原點的拋物線 軸的另一個交點為 ,現(xiàn)將拋物線向右平移 個單位長度,所得拋物線與 軸交于 ,與原拋物線交于點 ,設 的面積為 ,則用 表示 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020年擬繼續(xù)舉辦麗水市中學生漢字聽寫、詩詞誦寫大賽.經過初賽、復賽,選出了兩個代表隊參加市內7月份的決賽.兩個隊各選出的名選手的復賽成績如圖所示.

1)根據(jù)圖示補全下表;

平均數(shù)()

中位數(shù)()

眾數(shù)()

2)結合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的復賽成績較好;

3)計算兩隊成績的方差,并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家電集團公司研制生產的新家電,前期投資 萬元,每生產一臺這種新家電,后期還需其他投資萬元,已知每臺新家電售價為 萬元,設總投資為萬元(總投資前期投資 后期投資),總利潤為萬元(總利潤總售價總投資),新家電總產量為臺,(假設可按產量全部賣出)

1)試用含的代數(shù)式表示;

2)問新家電總產量超過多少臺時,該公司開始盈利?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD是等腰△ABC底邊BC上的高,sinB= ,點E在AC上,且AE:EC=2:3,則tan∠ADE=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“好玩三角形”,在Rt△ABC中,∠C=90°,若Rt△ABC是“好玩三角形”,則tanA=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的圖形,并且O的對應點O′的坐標為(4,3).

(1)求三角形ABO的面積;

(2)作出三角形ABO平移之后的圖形三角形A′B′O′,并寫出A′、B′兩點的坐標分別為A′   、B′   ;

(3)P(x,y)為三角形ABO中任意一點,則平移后對應點P′的坐標為__________.

查看答案和解析>>

同步練習冊答案