如圖5,動點M,N分別在直線ABCD上,且AB//CD,∠BMN與∠MND的平分線相交于點P,若以MN為直徑作⊙O,則點P與⊙O的位置關(guān)系是(    )

 

圖5

A.點P在⊙O外    B.點P在⊙O內(nèi)

C.點P在⊙O上    D.以上都有可能


C  點撥:∵ABCD,

∴∠BMN+∠MND=180°,

∵∠BMN與∠MND的平分線相交于點P,

∴∠PMN=BMN,∠PNM=MND,

∴∠PMN+∠PNM=90°.

∴∠MPN=180°-(∠PMN+∠PNM)=180°-90°=90°.

∴以MN為直徑作⊙O時,OP=MN=⊙O的半徑,

∴點P在⊙O上.故選C.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


在等腰△ABC中,如果兩邊長分別為6cm、10cm,則這個等腰三角形的周長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖:AB∥CD,GO和HO分別是∠BGH和∠GHD的角平分線。你能算出∠GOH的度數(shù)嗎?如果作OP⊥AB,OQ⊥CD,OR⊥EF,你能找到圖中的全等三角形嗎?說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖10,△ABC是直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,若AP=3,則PP′的長是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,AB是⊙O的切線,B為切點,AO與⊙O交于點C,若∠BAO=40°,則∠OCB的度數(shù)為(    )

A.40°    B.50°    C.65°    D.75°

     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖9,在Rt△ABC中,∠ACB=90°,AC=BC=1,EBC邊上的一點,以A為圓心,AE為半徑的圓弧交AB于點D,交AC的延長于點F,若圖中兩個陰影部分的面積相等,則AF的長為________(結(jié)果保留根號).

           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖16,在平面直角坐標(biāo)系中,以坐標(biāo)原點O為圓心,2為半徑畫⊙OP是⊙O上一動點,且P在第一象限內(nèi),過點P作⊙O的切線與x軸相交于點A,與y軸相交于點B

(1)點P在運動時,線段AB的長度也在發(fā)生變化,請寫出線段AB長度的最小值,并說明理由;

 

(2)在⊙O上是否存在一點Q,使得以QO,A,P為頂點的四邊形是平行四邊形?若存在,請求出Q點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


端午節(jié)期間,揚州某商場為了吸引顧客,開展有獎促銷活動,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被分成4個面積相等的扇形,四個扇形區(qū)域里分別標(biāo)有“10元”、“20元”、“30元”、“40元”的字樣(如圖8).規(guī)定:同一日內(nèi),顧客在本商場每消費滿100元就可以轉(zhuǎn)轉(zhuǎn)盤一次,商場根據(jù)轉(zhuǎn)盤指針指向區(qū)域所標(biāo)金額返還相應(yīng)數(shù)額的購物券,某顧客當(dāng)天消費240元,轉(zhuǎn)了兩次轉(zhuǎn)盤.

(1)該顧客最少可得_______元購物券,最多可得______元購物券;

(2)請用畫樹狀圖或列表的方法,求該顧客所獲購物券金額不低于50元的概率.

 

圖8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


布袋中有3個紅球和6個白球,它們除顏色外其他都相同,如果從布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是______.

查看答案和解析>>

同步練習(xí)冊答案