【題目】如圖,將一張直角三角形紙片BEC的斜邊放在矩形ABCD的BC邊上,恰好完全重合,BE、CE分別交AD于點F、G,BC=6,AF:FG:GD=3:2:1,則AB的長為(
A.1
B.
C.
D.2

【答案】C
【解析】解:∵四邊形ABCD是矩形, ∴AB=CD,AD=BC=6,∠A=∠D=90°,
∵∠E=90°,
∴∠EFG+∠EGF=90°,
∴∠AFB+∠DGC=90°,
∵∠AFB+∠ABF=90°,
∴∠ABF=∠DGC,
∴△AFB∽△DCG,
,
∵AF:FG:GD=3:2:1,
∴AF=3,DG=1,
∴AB2=AFDG=3,
∴AB=
故選C.
【考點精析】掌握矩形的性質(zhì)和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道矩形的四個角都是直角,矩形的對角線相等;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定在八年級陽光體育“大課間”活動中開設(shè)A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)將兩個統(tǒng)計圖補充完整;
(3)若調(diào)查到喜歡“立定跳遠”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(a,b)、B(1,4)(a>1)是反比例函數(shù)y= (x>0)圖象上兩點,過A、B分別作x軸、y軸的垂線,垂足分別為C、D、E、F,AE、BD交于點G.則四邊形ACDG的面積隨著a的增大而 . (填“減小”、“不變”或“增大”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時點燃甲乙兩根蠟燭,蠟燭燃燒剩下的長度y(cm)與燃燒時間x(min)的關(guān)系如圖所示.
(1)求乙蠟燭剩下的長度y與燃燒時間x的函數(shù)表達式;
(2)求點P的坐標(biāo),并說明其實際意義;
(3)求點燃多長時間,甲蠟燭剩下長度是乙蠟燭剩下長度的1.1倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A廠一月份產(chǎn)值為16萬元,因管理不善,二、三月份產(chǎn)值的月平均下降率為x(0<x<1).B廠一月份產(chǎn)值為12萬元,二月份產(chǎn)值下降率為x,經(jīng)過技術(shù)革新,三月份產(chǎn)值增長,增長率為2x.三月份A、B兩廠產(chǎn)值分別為yA、yB(單位:萬元).
(1)分別寫出yA、yB與x的函數(shù)表達式;
(2)當(dāng)yA=yB時,求x的值;
(3)當(dāng)x為何值時,三月份A、B兩廠產(chǎn)值的差距最大?最大值是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接DE并延長至點F,使EF=DE,連接AF、DC.求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺按如圖方式進行擺放,∠1、2不一定互補的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動小組要測量山坡上的電線桿PQ的高度,他們在A處測得信號塔頂端P的仰角是45°,信號塔底端點Q的仰角為31°,沿水平地面向前走100米到B處,測得信號塔頂端P的仰角是68°,求信號塔PQ的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,BC= .以BC的中點O為圓心的圓分別與AB、AC相切于D、E兩點,則 的長為 ( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案