【題目】已知在平面直角坐標(biāo)系中,拋物線(xiàn)與軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),且AB=6.
(1)求這條拋物線(xiàn)的對(duì)稱(chēng)軸及表達(dá)式;
(2)在y軸上取點(diǎn)E(0,2),點(diǎn)F為第一象限內(nèi)拋物線(xiàn)上一點(diǎn),聯(lián)結(jié)BF、EF,如果,求點(diǎn)F的坐標(biāo);
(3)在第(2)小題的條件下,點(diǎn)F在拋物線(xiàn)對(duì)稱(chēng)軸右側(cè),點(diǎn)P在軸上且在點(diǎn)B左側(cè),如果直線(xiàn)PF與y軸的夾角等于∠EBF,求點(diǎn)P的坐標(biāo).
【答案】(1),對(duì)稱(chēng)軸;(2)或;(3)
【解析】
(1)先將拋物線(xiàn)表達(dá)式化為頂點(diǎn)式,得出對(duì)稱(chēng)軸x=1,再根據(jù)拋物線(xiàn)與x軸兩交點(diǎn)的距離為6,可以得出A,B兩點(diǎn)的坐標(biāo),進(jìn)而可求出解析式.
(2)利用S四邊形OEFB=S△OEF+S△OBF列方程求解.
(3)找出兩等角所在的三角形,構(gòu)造一組相似三角形求解.
解:(1)將化為一般式得,
,
∴這條拋物線(xiàn)的對(duì)稱(chēng)軸為x=1.
又拋物線(xiàn)與軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),且AB=6,
∴根據(jù)對(duì)稱(chēng)性可得A,B兩點(diǎn)的坐標(biāo)分別為A(-2,0),B(4,0).
將A點(diǎn)坐標(biāo)代入解析式,可解得m=,
∴所求拋物線(xiàn)的解析式為.
(2)設(shè)點(diǎn)F的坐標(biāo)為(t, t2+t+4),如圖1可知
S四邊形OEFB=S△OEF+S△OBF
=×2×t+×4×(t2+t+4)=10,
解得,t=1或t=2,
∴點(diǎn)F的坐標(biāo)為或.
(3)假設(shè)直線(xiàn)PF與y軸交于點(diǎn)H,拋物線(xiàn)與y軸交于點(diǎn)C,連接CF,
則根據(jù)題意得∠FHC=∠EBF,
由(2)得點(diǎn)F的坐標(biāo)為(2,4),又點(diǎn)C坐標(biāo)為(0,4),
∴CF∥x軸,
過(guò)點(diǎn)F作FG⊥BE于點(diǎn)G,
有△CFH∽△GFB.
在△BEF中,根據(jù)已知點(diǎn)坐標(biāo)可以求得BE=BF=2,EF=2,
根據(jù)面積法可求得FG=,∴BG=
設(shè)直線(xiàn)FP的解釋式為y=kx+b,則OH=b,
∴CH=4-b,
∴
∴解得b=.
將點(diǎn)F的坐標(biāo)(2,4)代入FP的解析式可得,k=,
即FP的解析式為y=x+,
令y=0,可得P點(diǎn)坐標(biāo)為(-1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:二元一次不等式是指含有兩個(gè)未知數(shù)(即二元),并且未知數(shù)的次數(shù)是1次(即一次)的不等式;滿(mǎn)足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(duì)(x,y),所有這樣的有序數(shù)對(duì)(x,y)構(gòu)成的集合稱(chēng)為二元一次不等式(組)的解集.如:x+y>3是二元一次不等式,(1,4)是該不等式的解.有序?qū)崝?shù)對(duì)可以看成直角坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo).于是二元一次不等式(組)的解集就可以看成直角坐標(biāo)系內(nèi)的點(diǎn)構(gòu)成的集合.
(1)已知A(,1),B (1,﹣1),C (2,﹣1),D(﹣1,﹣1)四個(gè)點(diǎn),請(qǐng)?jiān)谥苯亲鴺?biāo)系中標(biāo)出這四個(gè)點(diǎn),這四個(gè)點(diǎn)中是x﹣y﹣2≤0的解的點(diǎn)是 .
(2)設(shè)的解集在坐標(biāo)系內(nèi)所對(duì)應(yīng)的點(diǎn)形成的圖形為G.
①求G的面積;
②P(x,y)為G內(nèi)(含邊界)的一點(diǎn),求3x+2y的取值范圍;
(3)設(shè)的解集圍成的圖形為M,直接寫(xiě)出拋物線(xiàn)y=x2+2mx+3m2﹣m﹣1與圖形M有交點(diǎn)時(shí)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,以點(diǎn)為圓心、為半徑作圓,設(shè)點(diǎn)為⊙上一點(diǎn),線(xiàn)段繞著點(diǎn)順時(shí)針旋轉(zhuǎn),得到線(xiàn)段,連接、.
(1)在圖中,補(bǔ)全圖形,并證明 .
(2)連接,若與⊙相切,則的度數(shù)為 .
(3)連接,則的最小值為 ;的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,存在拋物線(xiàn)以及兩點(diǎn)和.
(1)求該拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)若該拋物線(xiàn)經(jīng)過(guò)點(diǎn),求此拋物線(xiàn)的表達(dá)式;
(3)若該拋物線(xiàn)與線(xiàn)段只有一個(gè)公共點(diǎn),結(jié)合圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)中,函數(shù)值y與自變量之間的部分對(duì)應(yīng)關(guān)系如下表:
… | 0 | 1 | … | ||||
y | … | 0 | … |
(1)求該拋物線(xiàn)的表達(dá)式;
(2)如果將該拋物線(xiàn)平移,使它的頂點(diǎn)移到點(diǎn)M(2,4)的位置,那么其平移的方法是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,放置于平面直角坐標(biāo)系中,按下面要求畫(huà)圖:
(1)畫(huà)出繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)的.
(2)求點(diǎn)在旋轉(zhuǎn)過(guò)程中的路徑長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明在水平面E處,測(cè)得某建筑物AB的頂端A的仰角為42°,向正前方向走37米到達(dá)點(diǎn)D處,再往斜坡CD上走30米到達(dá)點(diǎn)C處,測(cè)得建筑物AB的頂端A的仰角為63.5°,已知斜坡CD的坡度為i=1:0.75,建筑物AB垂直于平臺(tái)BC,平臺(tái)BC與水平面DE平行,點(diǎn)A、B、C、D、E均在同一平面內(nèi),則建筑物AB的高度約為( )(精確到0.1米,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.0)
A.42.4米B.46.4米C.48.5米D.50.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,和都是等腰直角三角形,,的頂點(diǎn)與的斜邊的中點(diǎn)重合,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線(xiàn)段與線(xiàn)段相交于點(diǎn),射線(xiàn)與線(xiàn)段相交于點(diǎn),與射線(xiàn)相交于點(diǎn).
(1)求證:;
(2)求證:平分;
(3)當(dāng),,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開(kāi)這兩把鎖,其余的鑰匙不能打開(kāi)這兩把鎖.現(xiàn)在任意取出一把鑰匙去開(kāi)任意一把鎖.
(1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示出上述試驗(yàn)所有可能結(jié)果;
(2)求一次打開(kāi)鎖的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com